前列腺癌( prostate cancer, PCa )是男性最常见的恶性肿瘤之一,也是男性癌症死亡的主要原因之一
[
1
] 。前列腺特异膜抗原(prostate specific membrane antigen, PSMA)是一种在PCa上皮细胞明显高表达的跨膜糖蛋白
[
2
]。放射性核素
68Ga或
18F标记的PSMA抑制剂可用于PCa原发灶及转移灶的特异性显像。PSMA PET/CT或PET/MR显像不仅能显示PSMA表达部位,还能半定量分析其表达程度,显著提升PCa的早期诊断效能,成为PCa早期风险性评估和疗效评估的重要影像学技术
[
3
]。PSMA PET/CT或PET/MR具有高灵敏度和高特异性的优势,相较于MRI、CT和骨扫描,能检测到传统影像学诊断手段无法发现的淋巴结和远处转移病灶,从而更好地指导临床治疗
[
4
]。但PSMA PET影像诊断原发灶的视觉评估存在一些假阳性(新生血管丰富的实体瘤或良性病变也可高表达PSMA)和假阴性(被掩盖在高摄取背景下的隐匿病灶及摄取较低接近本底的病灶)的情况
[
5
]。有研究对PSMA PET和MRI在诊断临床显著PCa(clinically significant PCa, csPCa)时产生的假阴性率比较显示,17%的csPCa在MRI上呈假阴性,10%在PSMA PET上呈假阴性,而两者的灵敏度和特异性相似
[
6
]。在预测PCa组织病理分级方面,SUV
max、PSMA受体表达体积(PSMA receptor expressing tumor volume, PSMA-TV)、整体PCa病灶PSMA受体表达量(total lesion PSMA receptor expression, TL-PSMA)等勾画参数与Gleason评分相关,但作为预测分级的最佳参数尚缺乏统一标准
[
7
]。此外,PSMA PET对最大径<5 mm的阳性淋巴结检测率低,可能会导致错误的初始分期
[
8
]。预测治疗疗效有助于治疗前制定最佳的个体化治疗方案,
177Lu-PSMA-617对转移性去势抵抗性PCa(metastatic castration-resistant PCa, mCRPC)显示出了良好的治疗效果,但研究显示SUV
max及SUV
mean等参数难以预测其疗效
[
9
]。经典的雄激素剥夺治疗(androgen deprivation therapy, ADT)方案由于受限于肿瘤异质性也难以通过人工评估预测其疗效
[
10
]。随着医学影像技术的持续进步,影像组学迎来了显著发展,其旨在通过对肿瘤表型的形态学、统计学和纹理特征进行定量描述,以其同时兼备定量性和客观性而弥补了人工可视判读的不足
[
11
,
12
]。当前,PCa影像组学聚焦于原发灶诊断、临床分级及危险度分层以及预测预后等方面,在PCa诊疗中的重要性逐渐凸显。本文拟对治疗前PSMA PET影像组学(PET/CT及PET/MR)在PCa诊疗中的研究进展进行综述。
1.PSMA PET影像组学诊断原发性PCa。组织病理学检查是诊断PCa的标准方法,然而通过穿刺活组织检查(简称活检)取得的组织标本对PCa的漏诊率高达40%,并且穿刺活检可能会引发出血、疼痛、感染等风险
[
13
]。利用PSMA PET诊断PCa具有高灵敏度、高特异性以及非侵入性等优势。然而PSMA PET人工可视判读可能会漏诊隐匿原发病变
[
14
]。PSMA PET影像组学以其定量性和客观性,能在一定程度上弥补影像直观判读时漏诊的问题,有望实现非侵入、高精准诊断PCa,在帮助患者避免不必要的活检和过度治疗方面具有巨大前景
[
15
]。Zamboglou等
[
16
]的研究发现人工判读PSMA PET图像在训练队列的60%(12/20)的患者中遗漏了134个前列腺内病变,而2种影像组学特征在发现视觉遗漏的病灶中表现出色(AUC≥0.93),从而证实影像组学特征的应用可以准确发现在PSMA PET影像人工判读中可能会被忽视的具有临床意义的PCa原发病灶。在前列腺病灶良恶性鉴别方面,罗量等
[
17
]创建的PET和PET/CT影像组学模型在鉴别PCa和前列腺增生的测试集中的准确性、灵敏度、特异性分别为86.36%(19/22)、13/15、6/7和90.91%(20/22)、15/15、5/7,显著优于临床指标和PET常规参数的诊断效能。Zang等
[
15
]构建的影像组学模型在鉴别前列腺内病变良恶性的测试集中表现优于人工评估[AUC:0.85(95%
CI:0.73~0.97)和0.63(95%
CI:0.47~0.79);
P=0.036],为诊断PCa患者的前列腺内病变提供了一种无创、定量的方法。此外,Chan等
[
18
]的研究发现,PSMA PET和多参数MRI(multiparametric MRI, mpMRI)的联合影像组学特征比单独使用任一组特征都能更好地发现前列腺内病变(灵敏度、特异性和AUC分别为0.842、0.804和0.890),表明PSMA PET联合mpMRI影像组学研究模式或可提供更高的诊断价值。
2.PSMA PET影像组学在术前预测PCa临床病理分级及对危险度分层的应用。术前PCa的精准临床分级对指导治疗极为重要。Gleason评分系统是目前应用最广泛的PCa分级方法。国际泌尿病理学会(International Society of Urological Pathology, ISUP)基于Gleason总评分将PCa分为5个不同的组别(即ISUP分级),以提示肿瘤危险度,助力临床决策
[
19
]。然而,ISUP分级是基于穿刺生物样本的测量,受抽样误差和肿瘤异质性的影响可能会导致分级误判
[
20
]。PSMA PET的多个半定量参数与组织病理学分级虽然相关,但其缺乏准确和稳定的量化措施,可能会导致预测临床病理学效果欠佳
[
21
]。影像组学以其高通量的影像数据处理特点,可能会在一定程度上弥补穿刺检查的缺陷。Ghezzo等
[
22
]的研究结果支持
68Ga-PSMA-11 PET影像组学在准确、无创预测PCa ISUP分级中的作用,通过将影像组学模型与穿刺活检比较发现,影像组学模型预测ISUP分级的平衡准确性(balanced accuracy, bACC)、灵敏度和阴性预测值更高,分别为87.6%、88.6%和82.5%,而穿刺活检分别为85.9%、71.9%和62.5%。Solari等
[
23
]提取了
68Ga-PSMA-11 PET/MR图像的影像组学特征,训练了4个单模态影像组学模型[PET、T
1加权成像(weighted imaging, WI)、T
2WI、表观弥散系数(apparent diffusion coefficient, ADC)];3个PET+MRI双模态模型(PET+T
1WI、PET+T
2WI、PET+ADC)以及临床参数模型和影像参数模型用于比较预测Gleason评分分级的能力,结果显示所有单模态模型的预测性能[T
1WI、T
2WI、ADC、PET的bACC分别为(72±3)%、(73±2)%、(76±6)%、(75±5)%]均明显优于患者临床参数[bACC:(58±5)%]和影像参数模型[bACC:(65±7)%],而使用PSMA PET和MRI ADC影像组学的组合特征训练的双模态模型产生了最高的bACC[(82±5)%],证实了PSMA PET影像组学特征和MRI ADC影像组学特征具有互补价值,肯定了影像组学模型在预测Gleason评分方面的潜力。Wang等
[
24
]的研究提示
18F-PSMA-1007 PET/CT影像组学模型对于术前个体化预测Gleason分级具有明确意义,其开发的影像组学列线图模型成功地区分了高Gleason评分与低Gleason评分人群(AUC=0.719)。Feliciani等
[
25
]开发的
68Ga-PSMA-11 PET联合MRI ADC影像组学模型在区分低ISUP级别组患者和高ISUP级别组患者中具有明确意义(AUC=0.93),显示了联合模型在ISUP分级预测中的互补性。
PCa的危险度分层有助于临床决策及预测复发,危险度分层在临床上主要基于前列腺特异抗原(prostate specific antigen, PSA)水平、穿刺活检标本的Gleason评分以及TNM分期。已有研究证实了PSMA PET对危险度分层的价值:Papp等
[
26
]开发的PET/MR影像组学模型在预测PCa患者生化复发和总风险(overall patient risk, OPR)的准确性分别为89%和91%,而基于PSA、活检Gleason评分和TNM分期的临床病理模型预测BCR和OPR的准确性分别为69%和70%;Leung等
[
27
]开发的影像组学模型提供了病灶级别的PSMA-报告和数据系统(reporting and data system, RADS)和PCa危险度分类以辅助临床决策;Yao等
[
28
]发现在40%~50% SUV
max阈值下提取的
18F-PSMA-1007 PET影像组学特征对多种PCa生物学行为具有较好的预测评估性能,且较PSA生化模型具有更好的性能。这些研究证实PSMA PET影像组学在预测患者的生化和局部复发、全身进展风险以及肿瘤特异性和总体生存率等危险度分层方面具有重要价值,在完善PCa患者的个体化治疗决策方面具有广阔的应用前景。
3.PSMA PET影像组学在预测PCa疗效中的作用。ADT治疗仍然扮演着关键的角色,然而在治疗开始前预测治疗反应仍缺乏有效手段。不同病灶的异质性导致其对PSMA摄取的程度不同,使得PSMA PET的定量参数对其预测效果尚未明确,影像组学或可克服这些局限性。Tran等
[
10
]依据SUV
max阈值将前列腺划分为3个影像组学区域(1区为代谢肿瘤区,2区为近端外周肿瘤区,3区为延伸外周肿瘤区),并证实对前列腺内不同影像组学区域的特征分析有助于在ADT启动前区分有反应者和无反应者。Grahovac等
[
29
]提出了模糊影像组学(fuzzy radiomics)的处理方式,其在图像数据处理中对体素特征贡献进行加权,而不是用传统二元决策来包括病变体素;从PCa原发灶的
68Ga-PSMA-11 PET图像中提取特征分析后,与传统二进制影像组学相比,模糊影像组学模型在预测PCa的ADT后生存期方面具有更高的AUC(0.86)。
尽管近年来新的治疗药物不断出现,mCRPC的治疗仍然是临床肿瘤学的一个挑战
[
30
]。利用
177Lu-PSMA-617的放射配体靶向治疗的效果已在mCRPC患者Ⅲ期临床试验中得到肯定。既往研究也提示其良好的耐受性
[
31
,
32
]。因放射性药物制备的特殊性及患者辐射安全方面的考虑,治疗前预测药物疗效至关重要。Assadi等
[
33
]从
68Ga-PSMA-11 PET图像中提取了前列腺内原发病灶体积参数和影像组学特征,其中灰度共生矩阵(gray level co-occurrence matrix, GLCM)熵这一影像组学特征显示出对
177Lu-PSMA-617治疗后阳性生化应答最高的预测性能(AUC=0.719,灵敏度82%,特异性73%),因此建立了一种基于病灶预测
177Lu -PSMA-617治疗反应的模型。Roll等
[
34
]从21例接受
177Lu-PSMA-617治疗的晚期PCa患者前列腺内原发病灶PSMA PET/MR图像中找到了10个独立的影像组学特征,创建的logistic回归模型成功地预测了患者治疗后的整体生化应答(AUC=0.83)。Moazemi等
[
35
]的研究提取了治疗前原发灶的
68Ga-PSMA-11 PET/CT影像组学特征,通过生存分析发现基于影像组学特征划分的2组患者各自的总生存期具有明显差异(
P<0.05)。综上,基于PSMA PET的影像组学模型有潜力成为预测PCa疗效的工具。
4.PSMA PET影像组学与人工判读多角度比较。在PCa病灶诊断包括隐匿原发灶的检出及前列腺结节良恶性鉴别等方面,PSMA PET影像组学的灵敏度及准确性优于PSMA PET融合影像的人工判读
[
15
]。在预测PCa临床分级方面,PSMA PET影像组学预测模型的bACC超过80%,且预测性能相比PSMA PET融合影像参数具有更佳的表现
[
22
]。此外,PSMA PET融合影像定量参数虽具有PCa危险度分层的价值,但是受限于人工测量误差以及设备间的不一致性,其预测能力缺乏稳健性和泛化性,而影像组学模型在一定程度上校正了这些问题
[
36
,
37
,
38
]。在预测疗效方面,PSMA PET融合影像定量参数在预测PCa疗效方面并不出色
[
9
,
39
],但基于PSMA PET图像建立的影像组学模型在预测PCa疗效方面被证实具有较好的预测价值
[
33
],如Roll等
[
34
]创建的影像组学模型预测接受
177Lu-PSMA-617治疗的晚期PCa患者的整体生化应答达到了较高的预测性能(AUC=0.83)。综上,影像组学通过机器学习提取PSMA PET图像中病灶的高通量图像特征,克服了人工测量产生人为误差的局限性,同时针对不同区域进行分类分析,减少了肿瘤异质性带来的图像解读误差,提升了PSMA PET融合图像人工判读的准确性,在病灶诊断、分级、危险度分层、疗效预测方面具有较高的辅助价值。
5.展望与挑战。越来越多的研究肯定了PSMA PET影像组学在PCa诊断、分级及疗效预测中的价值。目前大多数研究仅停留在对影像组学数据的单一研究,探索影像组学结合临床参数的组合模型或成为将来的研究方向之一。
18F-PSMA-1007 PET显像存在骨非特异性摄取,可能影响PCa的临床分期,干扰临床决策,利用影像组学模型鉴别非特异性骨摄取灶良恶性的可行性有待进一步明确。也有研究表明,联合
18F-FDG PET/MR显像,可帮助
18F-PSMA PET/MR或PET/CT优化其诊断效能
[
40
,
41
],提示双核素联合的影像组学在未来或成为研究的热点。此外,PSMA PET影像基因组学领域也缺乏相关的探索,若能构建可预测基因特征的影像组学模型,将在一定程度上替代穿刺活检,并从更深层面揭示PCa生物学行为和影像组学特征的关系。
目前,PSMA PET影像组学研究多基于单中心、小样本、回顾性的研究,尚需要进行多中心、大样本、随机临床对照的前瞻性研究进行验证。此外,影像组学在一定程度上受到样本收集过程中的人群选择偏倚的限制
[
22
,
34
,
42
],有待进一步完善。总之,PSMA PET影像组学在PCa诊疗领域仍处于试验阶段,尚未广泛应用于临床工作。随着影像技术的进步和机器学习方法的提升,其将持续成为PCa诊疗领域研究的热点,具有广阔的研究前景。