综述
ENGLISH ABSTRACT
全面性发育迟缓/智力障碍合并先天性颅面部畸形的信号通路研究进展
蒋云舒
李晓南
作者及单位信息
·
DOI: 10.3760/cma.j.cn511374-20240924-00505
Advances in the study of signaling pathways in Global developmental delay / Intellectual disability combined with congenital craniofacial malformation
Jiang Yunshu
Li Xiaonan
Authors Info & Affiliations
Jiang Yunshu
Departmentof Children′s Health, Children′s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
Li Xiaonan
Departmentof Children′s Health, Children′s Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China
·
DOI: 10.3760/cma.j.cn511374-20240924-00505
55
19
0
0
2
0
PDF下载
APP内阅读
摘要

全面性发育迟缓(GDD)和智力障碍(ID)是指发育过程中出现的认知和适应功能缺陷。GDD/ID通常伴有复杂的发育异常,其中先天性颅面部畸形最为常见,包括颅缝早闭、唇腭裂和先天性牙齿缺失等。GDD/ID合并先天性颅面部畸形的具体发病机制尚不明确,随着越来越多遗传综合征的报道,遗传因素逐渐被认为是导致大脑与颅面部发育异常并发的关键原因。已有研究表明,Wnt、SHH、FGF和BMP是颅面部发育的经典调控分子,同时也与大脑发育的多个阶段密切相关。笔者拟重点综述Wnt、SHH、FGF和BMP信号通路在大脑和颅面部发育中的调控作用,以及其与GDD/ID和颅面部畸形发病机制的关联,旨在为阐释GDD/ID合并先天性颅面部畸形的病因提供新的研究思路。

全面性发育迟缓;智力低下;颅面部畸形;信号通路;基因
ABSTRACT

Global developmental delay (GDD) and intellectual disability (ID) refer to deficits in cognitive and adaptive functioning that arise during the developmental period. GDD/ID is often accompanied by complex developmental abnormalities, with congenital craniofacial malformations being among the most common, such as craniosynostosis, cleft lip and palate, and congenital tooth agenesis. However, the underlying mechanisms of GDD/ID associated with congenital craniofacial malformations remain unclear. With the increasing number of reported genetic syndromes, genetic factors are emerging as key contributors to the concurrent abnormalities in brain and craniofacial development. Studies have identified Wnt, SHH, FGF, and BMP as classical regulatory molecules in craniofacial development, and their roles have also been closely linked to various stages of brain development. This review focuses on the regulatory roles of Wnt, SHH, FGF, and BMP signaling pathways in brain and craniofacial development, as well as the pathogenic mechanisms underlying their association with GDD/ID and craniofacial malformations. The aim is to provide new insights into the etiology of GDD/ID combined with congenital craniofacial malformations.

Global Developmental Delay;Intellectual Disability;Craniofacial malformation;Signaling pathway;Gene
Li Xiaonan, Email: mocdef.3ab619816nanoaix
引用本文

蒋云舒,李晓南. 全面性发育迟缓/智力障碍合并先天性颅面部畸形的信号通路研究进展[J]. 中华医学遗传学杂志,2025,42(02):249-256.

DOI:10.3760/cma.j.cn511374-20240924-00505

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
全面性发育迟缓(global development delay,GDD)指5岁以下儿童在两个或多个领域未能达到年龄范围内预期的发育里程碑,包括粗大运动或精细运动、语言、认知、社交和社会适应能力。智力障碍(intellectual disability,ID)指5岁以上儿童存在智力功能缺陷与适应性功能缺陷 [ 1 ]。GDD与ID均为具有高度异质性的神经发育障碍性疾病,影响着全球约1%~3%的儿童 [ 2 ]。GDD/ID患儿常伴随复杂的发育异常,由头部及面部骨骼或软组织的异常生长发育所引起的先天性颅面部畸形是最常见的临床特征,总体发生率高于34% [ 3 , 4 ]
截至目前,GDD/ID合并先天性颅面部畸形的具体发病机制尚不明确,既往通常从发育时间和解剖结构两个方面进行解释,在胚胎发育时间轴上,大脑和颅面部共享同一个时间窗,都起自胚胎期(孕5周左右) [ 5 ];在解剖结构上,颅底既是大脑发生发展的平台,又为颅面部组织形态的变化提供模板 [ 6 ]。随着分子诊断技术的发展与普及,越来越多GDD/ID合并颅面部畸形的患儿被发现存在明确的遗传学病因,提示遗传因素可能是大脑与颅面部发育异常并发的关键原因。已有研究表明翼整合蛋白(wingless,Wnt)、音猬蛋白(sonic hedgehog,SHH)、成纤维细胞生长因子(fibroblast growth factor,FGF)、骨形成蛋白(bone morphogenetic protein,BMP)相关信号通路是颅面部发育的经典调控分子,其功能异常主要与颅缝早闭、唇腭裂、小下颌、牙齿缺如相关。此外,上述信号通路在大脑结构与功能的发生发展中同样扮演重要角色。本文围绕大脑发育与颅面部发育过程中Wnt、SHH、FGF、BMP相关信号通路展开综述,旨在从遗传学角度为阐明GDD/ID合并颅面部畸形的发生机制提供新的线索。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Maia N , Maria JNS , Melo PM ,et al. Intellectual disability genomics: current state, pitfalls and future challenges[J]. BMC Genomics, 2021,22(1):909. DOI: 10.1186/s12864-021-08227-4 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
赵燕单珊张凯华. 68例智力低下/发育迟缓患儿基因组拷贝数变异分析[J]. 国际遗传学杂志 2023,46(6):397-404. DOI: 10.3760/cma.j.cn231536-20230904-00020 .
返回引文位置Google Scholar
百度学术
万方数据
Zhao Y , Shan S , Zhang KH ,et al. Analysis of genomic copy number variations in 68 patients with intellectual disability/developmental delay[J]. Int J Genet Jun, 2023,46(6):397-404. DOI: 10.3760/cma.j.cn231536-20230904-00020 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[3]
Aldosari AN , Aldosari TS . Comprehensive evaluation of the child with global developmental delays or intellectual disability[J]. Clin Exp Pediatr, 2024,67(9):435-446. DOI: 10.3345/cep.2023.01697 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Zhang JM , Xu YR , Liu Y ,et al. Genetic testing for global developmental delay in early childhood[J]. JAMA Netw Open, 2024,7(6):e2415084. DOI: 10.1001/jamanetworkopen.2024.15084 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Ken T , Li JF , Patrick P ,et al. A multi-omic atlas of human embryonic skeletal development[J]. Nature, 2024,635(8039):657-667. DOI: 10.1038/s41586-024-08189-z .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Shankar RV , Eric VO . The skull′s girder: a brief review of the cranial base[J]. J Dev Biol, 2021,9(1):3. DOI: 10.3390/jdb9010003 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Liu JQ , Xiao Q , Xiao JN ,et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022,7(1):3. DOI: 10.1038/s41392-021-00762-6 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Li XY , Li YX , Li SQ ,et al. The role of Shh signalling pathway in central nervous system development and related diseases[J]. Cell Biochem Funct, 2020,39(2):180-189. DOI: 10.1002/cbf.3582 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
BLospinoso S , Ghirga F , Bufalieri F ,et al. The SHH/GLI signaling pathway: a therapeutic target for medulloblast-oma[J]. Expert Opin Ther Targets, 2020,24(11):1159-1181. DOI: 10.1080/14728222.2020.1823967 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Li XK . The FGF metabolic axis[J]. Front Med, 2019,13(5):511-530. DOI: 10.1007/s11684-019-0711-y .
返回引文位置Google Scholar
百度学术
万方数据
[11]
墨芸邹慧儒. 骨形态发生蛋白家族成员在成牙分化中作用的研究进展[J]. 国际生物医学工程杂志 2024,47(5):485-491. DOI: 10.3760/cma.j.cn121382-20240603-00511 .
返回引文位置Google Scholar
百度学术
万方数据
Mo Y , Zou HR . Research progress in the role of bone morphogenetic protein family members for odontogenic differentiation[J]. Int J Biomed Eng, 2024,47(5):485-491. DOI: 10.3760/cma.j.cn121382-20240603-00511 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[12]
Christodoulou N , Skourides PA . Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure[J]. Development, 2022,149(13):dev200358. DOI: 10.1242/dev.200358 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Shi DL . Canonical and non-canonical wnt signaling generates molecular and cellular asymmetries to establish embryonic axes[J]. J Dev Biol, 2024,12(3):20. DOI: 10.3390/jdb12030020 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Sokol SY . Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development[J]. Semin Cell Dev Biol, 2015,42:78-85. DOI: 10.1016/j.semcdb.2015.05.002 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Calloni SF , Caschera L , Triulzi FM . Disorders of ventral induction/spectrum of holoprosencephaly[J]. Neuroimaging Clin N Am, 2019,29(3):411-421. DOI: 10.1016/j.nic.2019.03.003 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
王志燕宋涛. 前脑无裂畸形诊断与治疗[J]. 中华整形外科杂志 2024,40(3):325-330. DOI: 10.3760/cma.j.cn114453-20231028-00148 .
返回引文位置Google Scholar
百度学术
万方数据
Wang ZY , Song T . Diagnosis and treatment in holoprosencephaly[J]. Chin J Plas Surg, 2024,40(3):325-330. DOI: 10.3760/cma.j.cn114453-20231028-00148 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[17]
Society for Maternal-Fetal Medicine (SMFM); Monteagudo A . Holoprosencephaly[J]. Am J Obstet Gynecol, 2020,223(6):B13-B16. DOI: 10.1016/j.ajog.2020.08.178 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Chenn A , Walsh CA . Regulation of cerebral cortical size by control of cell cycle exit in neural precursors[J]. Science, 2002,297(5580):365-369. DOI: 10.1126/science.1074192 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Hirabayashi Y , Itoh Y , Tabata H ,et al. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells[J]. Development, 2004,131(12):2791-2801. DOI: 10.1242/dev.01165 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
景乃禾盛能印谢治慧. BMP信号通路在中枢神经系统发育过程中的作用[J]. 细胞生物学杂志 2009,31(1):2-8. DOI: CNKI:SUN:XBZZ.0.2009-01-004 .
返回引文位置Google Scholar
百度学术
万方数据
Jing NH , Sheng NY , Xie ZH . The function of BMP signaling pathway during the central nervous system development[J]. J Cell Biol, 2009,31(1):2-8. DOI: CNKI:SUN:XBZZ.0.2009-01-004
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[21]
宋琳. 经典Wnt信号通路调节大鼠压后皮层上层锥体神经元树突发育的研究[D]. 大连大连理工大学 2021.
返回引文位置Google Scholar
百度学术
万方数据
Song L . Study on the regulation of dend ritic development in the upper pyramidal neurons of the rat cortex by the classical Wnt signaling pathway after compression [D]. Dalian:Dalian Univ Tech, 2021.
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[22]
He WL , Cui LL . Sonic hedgehog promotes neurite outgrowth of primary cortical neurons through up-regulating BDNF expression[J]. Neurochem Res, 2015,41(4):687-695. DOI: 10.1007/s11064-015-1736-5 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
von Bohlen Und Halbach O , von Bohlen Und Halbach V . BDNF effects on dendritic spine morphology and hippocampal function[J]. Cell Tissue Res, 2018,373(3):729-741. DOI: 10.1007/s00441-017-2782-x .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Dinh Duong TA , Hoshiba Y , Saito K ,et al. FGF signaling directs the cell fate switch from neurons to astrocytes in the developing mouse cerebral cortex[J]. J Neurosci, 2019,39(31):6081-6094. DOI: 10.1523/JNEUROSCI.2195-18.2019 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Biadun M , Karelus R , Krowarsch D ,et al. FGF12: biology and function[J]. Differentiation, 2024,139:100740. DOI: 10.1016/j.diff.2023.100740 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Goldfarb M . Fibroblast growth factor homologous factors:canonical and non-canonical mechanisms of action[J]. J Physiol, 2024,602(17):4097-4110. DOI: 10.1113/JP286313 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Yu Q , Guan T , Guo Y ,et al. The initial myelination in the central nervous system[J]. ASN Neuro, 2023,15(1):20322146177102. DOI: 10.1177/17590914231163039 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
翁超卢祖能符辉. 少突胶质细胞分化发育与髓鞘形成的研究进展[J]. 中华神经医学杂志 2016,15(5):524-528. DOI: 10.3760/cma.j.issn.1671-8925.2016.05.022 .
返回引文位置Google Scholar
百度学术
万方数据
Weng C , Lu ZN , Fu H . Recent advance in oligodendrocyte differentiation, development and myelin formation[J]. Chin J Neuromed, 2016,15(5):524-528. DOI: 10.3760/cma.j.issn.1671-8925.2016.05.022 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[29]
Winkler CC , Franco SJ . Loss of SHH signaling in the neocortex reveals heterogeneous cell recovery responses from distinct oligo-dendrocyte populations[J]. Dev Biol, 2019,452:55-65. DOI: 10.1016/j.ydbio.2019.04.016 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
汪芷羽苏学文. 儿童中枢神经系统髓鞘发育及相关疾病研究进展[J]. 国际儿科学杂志 2023,50(8):544-548. DOI: 10.3760/cma.j.issn.1673-4408.2023.08.010 .
返回引文位置Google Scholar
百度学术
万方数据
Wang ZY , Su XW . Progress of the central nervous system myelin sheath development and related diseases in children[J]. Int J Pediatr, 2023,50(8):544-548. DOI: 10.3760/cma.j.issn.1673-4408.2023.08.010 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[31]
Zhang WB , Yelick PC . Craniofacial tissue engineering[J]. Cold Spring Harb Perspect Med, 2018,8(1):a025775. DOI: 10.1101/cshperspect.a025775 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
毛轲孟子秋张永彪. 神经嵴发育调控及颅面部遗传基础研究进展[J]. 遗传 2022,44(12):1089-1102. DOI: 10.16288/j.yczz.22-221 .
返回引文位置Google Scholar
百度学术
万方数据
Mao K , Meng ZQ , Zhang YB . Progress on the regulation of neural crest and the genetics in craniofacial development[J]. Hereditas (Beijing), 2022,44(12):1089-1102. DOI: 10.16288/j.yczz.22-221 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[33]
White HE , Goswami A , Tucker AS . The intertwined evolution and development of sutures and cranial morphology[J]. Front Cell Dev Biol, 2021,9:653579. DOI: 10.3389/fcell.2021.653579 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Hajihosseini MK , Heath JK . Expression patterns of fibroblast growth factors 18 and 20 in mouse embryos is suggestive of novel roles in calvarial and limb development[J]. Mech Dev, 2002,113(1):79-83. DOI: 10.1016/s0925-4773(01)00656-6 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Twigg SRF , Wilkie AOM . A genetic-pathophysiological framework for craniosynostosis[J]. Am J Hum Genet, 2015,97(3):359-377. DOI: 10.1016/j.ajhg.2015.07.006 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
穆雄锋鲍南梁平. 儿童颅缝早闭症诊治专家共识[J]. 中华小儿外科杂志 2021,42(9):769-773. DOI: 10.3760/cma.j.cn421158-20210208-00069 .
返回引文位置Google Scholar
百度学术
万方数据
Mu XZ , Bao N , Liang P . Expert consensus on diagnosing and treating craniosynostosis in children[J]. Chin J Pediatr Surg, 2021,42(9):769-773. DOI: 10.3760/cma.j.cn421158-20210208-00069 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[37]
吴颖之彭美芳穆雄铮. 先天性颅缝早闭症的遗传学研究进展[J]. 中华整形外科杂志 2022,38(5):595-600. DOI: 10.3760/cma.j.cn114453-20210117-00027 .
返回引文位置Google Scholar
百度学术
万方数据
Wu YZ , Peng MF , Mu XZ . Genetic research progress in congenital craniosynostosis[J]. Chin J Plast Surg, 2022,38(5):595-600. DOI: 10.3760/cma.j.cn114453-20210117-00027 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[38]
Maruyama T , Jiang M , Abbott A . Rap1b is an effector of Axin2 regulating crosstalk of signaling pathways during skeletal development[J]. J Bone Miner Res, 2017,32(9):1816-1828. DOI: 10.1002/jbmr.3171 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Wu XW , Gu Y . Signaling mechanisms underlying genetic pathophysiology of craniosynostosis[J]. Int J Biol Sci, 2019,15(2):298-311. DOI: 10.7150/ijbs.29183 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Babai A , Irving M . Orofacial clefts: genetics of cleft lip and palate[J]. Genes (Basel), 2023,14(8):1603. DOI: 10.3390/genes14081603 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
王艳阳吴镝毛轲. 唇腭裂相关基因的关键信号通路[J]. 中华医学遗传学杂志 2020,37(2):195-199. DOI: 10.3760/cma.j.issn.1003-9406.2020.02.024 .
返回引文位置Google Scholar
百度学术
万方数据
Wang YY , Wu D , Mao K . Key signaling pathways associated with risks forcleft lip and palate[J]. Chin J Med Genet, 2020,37(2):195-199. DOI: 10.3760/cma.j.issn.1003-9406.2020.02.024 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[42]
Alois CI , Ruotolo RA . An overview of cleft lip and palat[J]. JAAPA, 2020,33(12):17-20. DOI: 10.1097/01.JAA.0000721644.06681.06 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Jain R , Dharma RM , Dinesh MR ,et al. Association of Wnt9B rs1530364 and Wnt5A rs566926 gene polymorphisms with nonsyndromic cleft lip and palate in South Indian population using deoxyribonucleic acid sequencing [J]. Contemp Clin Dent, 2020,11(1):60. DOI: 10.4103/ccd.ccd_90_19 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Ma YQ , Zhang XY , Zhao SW ,et al. Retinoic acid delays murine palatal shelf elevation by inhibiting Wnt5a-mediated noncanonical Wnt signaling and downstream Cdc-42/F-actin remodeling in mesenchymal cells[J]. Birth Defects Res, 2023,115(17):1658-1673. DOI: 10.1002/bdr2.2244 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Lee JM , Kim JY , Cho KW ,et al. Wnt11/FGFr1b cross-talk modulates the fate of cells in palate development[J]. Developmental biology, 2007,314(2):341-350. DOI: 10.1016/j.ydbio.2007.11.033 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Haque T , Nakada S , Hamdy RC . A review of FGF18: its expression, signaling pathways and possible functions during embryogenesis and post-natal development[J]. Histol Histopathol, 2007,22(1):97-105. DOI: 10.14670/HH-22.97 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Ueharu H , Mishina Y . BMP signaling during craniofacial development:new insights into pathological mechanisms leading to craniofacial anomalies[J]. Front Physiol, 2023,14:1170511. DOI: 10.3389/fphys.2023.1170511 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Naros A , Bartel S , Bacher M ,et al. Speech development in cleft palate with and without Robin sequence[J]. Plast Reconstr Surg, 2022,149(2):443-452. DOI: 10.1097/PRS.0000000000008730 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
范力文. 唇腭裂易感位点和microRNA多态性与非综合征型先天缺牙易感性的关联研究[D]. 南京南京医科大学 2019.
返回引文位置Google Scholar
百度学术
万方数据
Fan LW . Study on the association between susceptibility loci for cleft lip and palate, microRNA polymorphisms, and the susceptibility to non-syndromic congenital tooth agenesis[D]. Nanjing:Nanjing Med Univ, 2019.
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[50]
段小红代表中华口腔医学会口腔遗传病与罕见病专业委员会. 口腔罕见病名录(第一版)[J]. 中华口腔医学杂志 2020,55(7):494-500. DOI: 10.3760/cma.j.cn112144-20200226-00092 .
返回引文位置Google Scholar
百度学术
万方数据
Duan XH ,on behalf of Society of Oral Genetic Diseases and Rare Diseases. Chinese Stomatological Association (The first edition of oral rare diseases list)[J]. Chin J Stomatol, 2020,55(7):494-500. DOI: 10.3760/cma.j.cn112144-20200226-00092 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[51]
许涛云郭新月段小红. Wnt10A 基因突变导致非综合征型先天缺牙的表型与基因型分析 [J]. 口腔生物医学 2024,15(4):206-211. DOI: 10.3969/j.issn.1674-8603.2024.04.004 .
返回引文位置Google Scholar
百度学术
万方数据
Xu TY , Guo XY , Duan XH . Genotype-phenotype analysis of non-syndromic tooth agenesis caused by Wnt10A gene variation [J]. Oral Biomed, 2024,15(4):206-211. DOI: 10.3969/j.issn.1674-8603.2024.04.004 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[52]
徐静毛智贾一凡. Wnt10A 基因杂合突变致多数牙先天缺失伴前牙反1例 [J]. 中华口腔医学杂志 2023,58(2):185-188. DOI: 10.3760/cma.j.cn112144-20221018-00537 .
返回引文位置Google Scholar
百度学术
万方数据
Xu J , Mao Z , Jia YF ,et al. A heterozygous mutation of Wnt10A gene caused congenital hypodontia and anterior crossbite [J]. Chin J Stomatol, 2023,58(2):185-188. DOI: 10.3760/cma.j.cn112144-20221018-00537 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[53]
Trybek G , Jaro A , Gabrysz TE ,et al. Genetic factors of teeth impaction: polymorphic and haplotype variants of PAX9, MSX1, AXIN2 , and IRF6 Genes [J]. Int J Mol Sci, 2023,24(18):13889. DOI: 10.3390/ijms241813889 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Zhao Y , Ren JB , Meng LQ ,et al. Characterization of novel MSX1 variants causally associated with non-syndromic oligodontia in Chinese families [J]. Mol Genet Genomic Med, 2024,12(1):e2334. DOI: 10.1002/mgg3.2334 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
李晓南,Email: mocdef.3ab619816nanoaix
B

蒋云舒:起草文章;李晓南:指导、对文章的知识性内容作批判性审阅

C
所有作者均声明不存在利益冲突
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号