临床研究
ENGLISH ABSTRACT
mcfDNA与小年龄、低体重先天性心脏病患儿体外循环手术预后的相关性研究
杨元恺
刘彩霞
刘一为
文云红
刘海燕
马鞅
作者及单位信息
·
DOI: 10.3760/cma.j.cn421158-20240416-00187
Correlation of mcfDNA with the prognosis of young and low weight pediatric patient with congenital heart disease after cardiopulmonary bypass
Yang Yuankai
Liu Caixia
Liu Yiwei
Wen Yunhong
Liu Haiyan
Ma Yang
Authors Info & Affiliations
Yang Yuankai
Department of Pediatrics, Shanxi Medical University, Taiyuan 030001, China
Liu Caixia
Department of Cardiothoracic Surgery, Shanxi Children's Hospital, Taiyuan 030025, China
Liu Yiwei
Department of Cardiothoracic Surgery, Shanxi Children's Hospital, Taiyuan 030025, China
Wen Yunhong
Department of Cardiothoracic Surgery, Shanxi Children's Hospital, Taiyuan 030025, China
Liu Haiyan
Department of Cardiothoracic Surgery, Shanxi Children's Hospital, Taiyuan 030025, China
Ma Yang
Department of Cardiothoracic Surgery, Shanxi Children's Hospital, Taiyuan 030025, China
·
DOI: 10.3760/cma.j.cn421158-20240416-00187
0
0
0
0
0
0
PDF下载
APP内阅读
摘要

目的探讨循环游离线粒体DNA(mitochondrial cell-free DNA,mcfDNA)对先天性心脏病(congenital heart disease,CHD)体外循环手术预后的预测价值。

方法前瞻性收集山西省儿童医院心胸外科2022年2月至2023年1月小年龄(<1岁)、低体重(3 kg≤体重≤8 kg)CHD患儿的临床资料。收集患儿手术切皮前、体外循环结束即刻、体外循环后12 h、体外循环后24 h的外周血标本,采用荧光定量聚合酶链反应技术检测血标本中的mcfDNA水平。根据预后情况,将CHD患儿分为预后良好组(痊愈且术后住院时间≤30 d)和预后不良组(术后30 d内死亡或术后住院时间>30 d)。分析预后良好组和预后不良组mcfDNA的变化趋势;并对不同时间点mcfDNA水平进行差异性分析。使用受试者操作特征曲线评估mcfDNA对患儿不良预后的预测价值及阈值。

结果共收集到59例CHD患儿,预后良好组47例,预后不良组12例。两组患儿年龄、体重差异无统计学意义( P>0.05)。预后良好组mcfDNA水平在体外循环期间显著升高,在体外循环后12 h和24 h逐渐下降,预后不良组在体外循环期间上升,在体外循环后12 h显著升高并达到峰值,在体外循环后24 h趋于下降。两组间切皮前、体外循环结束即刻、体外循环后12 h、24 h这4个时间点mcfDNA水平差异均有统计学意义( P<0.05),预后不良组mcfDNA水平较预后良好组显著升高。体外循环后24 h mcfDNA受试者操作特征曲线下面积最大,对手术不良预后预测性能最强,其最优灵敏度和特异度分别为83.3%和85.1%,预测阈值为19 533 copies/μl。

结论mcfDNA水平对小年龄、低体重CHD患儿不良预后有一定预测价值,体外循环后24 h的mcfDNA水平对不良预后的预测性能最强。

心脏病;先天畸形;线粒体DNA;体外循环;阈值
ABSTRACT

ObjectiveTo investigate the predictive value and optimal cutoff of mitochondrial cell-free DNA (mcfDNA) for the prognosis of congenital heart disease (CHD) surgery utilizing cardiopulmonary bypass (CPB).

MethodsThe clinical data of 59 CHD patients under 1 year old and with a low weight (3kg≤body weight≤8kg) in the Cardiothoracic Surgery Department of Children's Hospital of Shanxi Province from February 2022 to January 2023 were prospectively collected. Peripheral blood samples were collected from the patients before skin incision (T1), immediately after CPB (T2), 12h after CPB (T3), and 24h after CPB (T4). The levels of mcfDNA in the blood samples were detected by fluorescence quantitative polymerase chain reaction (PCR). Based on the prognosis, CHD patients were divided into the good prognosis group (recovered and hospital stay≤30 days) and the poor prognosis group (death within 30 days after surgery or hospital stay>30 days). Changes in the mcfDNA between the good prognosis group and the poor prognosis group were analyzed, and differences in mcfDNA levels at different time points were analyzed. The predictive value and threshold of mcfDNA for the poor prognosis in children were evaluated using receiver operating characteristic (ROC) curves.

ResultsA total of 59 CHD patients were collected, including 47 in the good prognosis group and 12 in the poor prognosis group. There were no significant differences in age and body weight between the two groups ( P>0.05). The mcfDNA level in the good prognosis group increased significantly during CPB and gradually decreased at 12 hours and 24 hours after CPB. In the poor prognosis group, the mcfDNA level increased during CPB, increased significantly and reached the peak at 12 hours after CPB, and tended to decrease at 24 hours after CPB. There were significant differences in mcfDNA levels between the two groups before skin incision, immediately after the end of CPB, 12 hours after CPB, and 24 hours after CPB ( P<0.05), and the mcfDNA level in the poor prognosis group was significantly higher than that of the good prognosis group. The area under the curve (AUC) of mcfDNA at 24 hours after CPB was the largest, and it had the strongest predictive performance for poor surgical prognosis. Its optimal sensitivity and specificity were 83.3% and 85.1%, respectively, and the predictive threshold was 19,533 copies/μl.

ConclusionsThe level of mcfDNA has a certain predictive value for the poor prognosis of CHD patients with a young age and low body weight, and the level of mcfDNA at 24h after CPB has the strongest predictive performance for the poor prognosis.

Heart disease;Congenital abnormalities;Mitochondrial DNA;Cardiopulmonary bypass;Threshold
Liu Caixia, Email: mocdef.3ab616xcuilyyte
引用本文

杨元恺,刘彩霞,刘一为,等. mcfDNA与小年龄、低体重先天性心脏病患儿体外循环手术预后的相关性研究[J]. 中华小儿外科杂志,2025,46(03):222-227.

DOI:10.3760/cma.j.cn421158-20240416-00187

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
先天性心脏病(congenital heart disease,CHD)是由于胎儿心脏在母体妊娠期间发育有缺陷或部分发育停顿所造成的畸形,是常见的人类出生缺陷和儿童非感染性疾病,活产儿中发病率为1%,是1岁以下婴儿死亡的主要原因 [ 1 , 2 ]。随着产前诊断技术的提高和心外科技术水平的快速发展,CHD手术逐渐趋于低龄化、复杂化和低体重化,危重程度和手术风险明显增加 [ 3 , 4 ]。体外循环为CHD手术的关键技术,是心脏直视手术不可或缺的部分,可在心内直视手术时替代心脏和肺的功能,使终末器官保持充足的氧合和灌注 [ 5 ]
心肌细胞中存在大量的线粒体 [ 6 ]。线粒体作为一种重要的细胞器,是产生能量的器官,不断经历生物起源、融合、裂变和降解的协调循环,并形成一个复杂的网络以适应能量需求的动态变化 [ 7 , 8 ]。氧化应激下线粒体会受到损伤,受损伤的线粒体通常通过自噬而被降解,被降解的线粒体DNA就会释放进入循环系统,形成循环游离线粒体DNA(mitochondrial cell-free DNA,mcfDNA) [ 9 , 10 ]。国内外对mcfDNA在心血管领域的研究主要局限于炎症反应和心肌损伤等方面 [ 11 , 12 , 13 , 14 ]。2021年Scott等 [ 15 ]首次发现mcfDNA水平可能与体外循环术后心肌损伤程度相关,对患儿不良预后有一定的预测价值,但由于该研究不良预后病例较少,因此有学者对其预测价值提出一定质疑 [ 16 ]。本研究旨在通过检测小年龄、低体重的CHD患儿不同时间点的mcfDNA水平,分析mcfDNA水平对CHD体外循环手术不良预后的预测价值。
资料与方法
一、临床资料
收集山西省儿童医院心胸外科2022年2月至2023年1月小年龄、低体重CHD患儿的临床资料和手术切皮前、体外循环结束即刻、体外循环后12 h、体外循环后24 h的外周血标本2 ml保存于EDTA抗凝管内。病例纳入标准:①经心脏彩色多普勒超声和体格检查确诊需体外循环手术治疗的CHD患儿;②患儿年龄<1岁,3 kg≤体重≤8 kg。排除标准:①术前进行呼吸机机械通气治疗;②合并其他代谢性疾病。本研究经山西省儿童医院伦理委员会审核批准(IRB-KYYN-2022-010),家属均知情同意。
二、mcfDNA的检测及分析比较
1.分离CHD患儿血浆
将采集2 ml全血的EDTA抗凝采血管与装有生理盐水的EDTA抗凝采血管配平,对称放入离心机保护套中,4℃、2 000×g离心15 min,取上清液,将上清液转移至灭菌EP管内,4℃、16 000×g离心10 min。取其上清液(不含血细胞的血浆)转移至新的灭菌EP管中,保存至-80℃超低温冰箱。
2.荧光定量聚合酶链反应(polymerase chain reaction,PCR)检测mcfDNA水平
①制备mcfDNA标准品:把目的序列线粒体mt-ND2片段(MT-ND2:NC_012920.1:4470-5511)通过基因合成构建出重组载体,即mcfDNA标准品。②样品荧光定量PCR扩增方法:采用磁珠法提取CHD患儿血浆标本中的循环游离DNA,提取的循环游离DNA为模板,利用目标序列mt-ND2基因片段设计特异性引物(正向引物序列为CACAGAAGCTGC CATCAAGTA,反向引物序列为CCGGAGAGT ATATTGTTGAAGAG),SYBR Green荧光定量PCR测定mcfDNA水平。反应体系为15 μl∶7.5 μl× 2×Universal Blue SYBR Green qPCR预混液+1.5 μl基因引物(上游+下游)+2.0 μl DNA+4.0 μl水,95℃、30 s,95℃、15 s,60℃、30 s,40个循环,65℃~95℃,每升温0.5℃,采集1次荧光信号。③绘制标准曲线:对mcfDNA标准品按10倍浓度梯度稀释,将不同梯度浓度的mcfDNA标准品进行荧光定量PCR扩增并测量其CT值,绘制标准曲线。④数据分析:根据样本荧光定量PCR所得出的CT值,结合标准曲线,计算样本mcfDNA拷贝数。
3.mcfDNA水平的分析比较
收集患儿预后情况,将CHD患儿分为预后良好组(痊愈且术后住院时间≤30 d)和预后不良组(术后30 d内死亡或术后住院时间>30 d) [ 15 ]。分析预后良好组和预后不良组mcfDNA的变化趋势,并对不同时间点mcfDNA水平进行差异性分析。
4.mcfDNA水平对CHD体外循环手术不良预后的预测阈值研究
使用受试者操作特征曲线(receiver operator characteristic curve,ROC)评估不同时间点mcfDNA对患儿不良预后的预测价值及阈值。
三、统计学方法
应用SPSS 26.0软件进行统计分析,符合正态分布的计量资料以 ± s表示,非正态分布的计量资料以 MQ 1Q 3)表示,计数资料用百分比表示;计数资料组间比较采用Mann-Whitney U两样本秩和检验;计量资料组间比较采用Pearson χ 2检验或Fisher确切概率法。绘制mcfDNA水平与预后的ROC曲线,计算曲线下面积(area under the curve,AUC)来评估相关指标的预测价值,同时计算约登指数得出最佳截断值(阈值)及最佳灵敏度和特异度。 P<0.05为差异有统计学意义。
结果
一、一般资料情况
共59例小年龄、低体重CHD患儿纳入研究,其中男27例,女32例,年龄为(165±12)d,中位体重为6.0(4.9,7.9)kg。术前mcfDNA中位数为8 896(3 696,19 066)copies/μl,术后即刻mcfDNA中位数为15 722(7 408,30 199)copies/μl,术后即刻mcfDNA水平显著高于术前,差异具有统计学意义( P=0.008)。根据术后结局及术后住院时间分为预后良好组和预后不良组,两组患儿年龄和体重差异均无统计学意义( P>0.05, 表1 )。预后不良组中死亡2例,10例术后住院时间>30 d。
分组 例数 性别(例) 年龄(d) 体重(kg)
预后良好组 47 17 30 153(88,244) 6.0(5.0,7.7)
预后不良组 12 10 2 187(51,276) 7.5(4.4,7.8)
χ 2/Z值 - 0.007 -0.180 -0.580
P - 0.003 0.858 0.565
两组先天性心脏病患儿临床资料的比较[MQ 1Q 3)]
二、两组不同时间点mcfDNA表达水平的比较
预后良好组mcfDNA水平在体外循环期间显著升高,在体外循环后12 h和24 h逐渐下降;预后不良组在体外循环期间上升,在体外循环后12 h显著升高并达到峰值,在体外循环后24 h趋于下降( 图1 )。预后良好组与预后不良组进行mcfDNA水平组间比较,两组间切皮前、体外循环结束即刻、体外循环后12 h、24 h这4个时间点的mcfDNA水平差异有统计学意义(均 P<0.05),预后不良组mcfDNA水平较预后良好组显著升高( 图1表2 )。切皮前、体外循环结束即刻、体外循环后12 h、体外循环后24 h,预后不良组mcfDNA水平中位数显著高于预后良好组中位数。
两组先天性心脏病患儿mcfDNA表达水平变化趋势

注:mcfDNA,循环游离线粒体DNA;T1,手术切皮前;T2,体外循环结束即刻;T3,体外循环后12 h;T4,体外循环后24 h。

分组 切皮前 CPB结束即刻 CPB后12 h CPB后24 h
预后不良组 18 759(8 640,27 195) 34 338(19 107,115 493) 42 576(23 327,86 891) 38 067(21 489,77 535)
预后良好组 6 415(2 745,14 236) 14 025(8 148,28 531) 9 648(4 085,30 767) 8 571(4 646,16 914)
Z -2.66 -3.18 -3.09 -4.31
P 0.008 0.001 0.002 <0.001
两组先天性心脏病患儿不同时间点mcfDNA表达水平差异性分析[copies/μl, MQ 1Q 3)]

注:mcfDNA,循环游离线粒体DNA;CPB,体外循环。

三、不同时间点mcfDNA预测体外循环手术不良预后的阈值研究
切皮前、体外循环结束即刻、体外循环后12 h、体外循环后24 h mcfDNA预测不良预后ROC的AUC分别为0.750(95% CI 0.608~0.892, P=0.008),0.800(95% CI 0.673~0.927, P=0.001),0.791(95% CI 0.661~0.921, P=0.002),0.906(95% CI 0.818~0.994, P<0.001)。体外循环后24 h的AUC最大,预测性能最好,最优灵敏度和特异度分别为83.3%和85.1%,阈值为19 533 copies/μl,约登指数为0.684。( 图2
不同时间点mcfDNA预测先天性心脏病患儿不良预后的ROC曲线图

注:mcfDNA,循环游离线粒体DNA;ROC曲线,受试者操作特征曲线;T1,手术切皮前;T2,体外循环结束即刻;T3,体外循环后12 h;T4,体外循环后24 h;T4时间点ROC曲线下面积最大,预测性能最好,最优灵敏度和特异度分别为83.3%和85.1%。

讨论
我国每年约有30万名CHD患儿出生,CHD是造成1岁以下婴儿死亡的主要因素 [ 2 , 17 ]。随着CHD手术逐渐趋于低龄化、复杂化和低体重化,患儿病情危重程度和手术风险增加,住院时间延长,其家庭和社会所承担的经济与心理负担也随之加重,因而实时监测和预后评估CHD患儿的病情显得尤为重要,对提升患儿的治疗效果和生活质量有不可忽视的作用。
线粒体DNA作为细胞内唯一的核外遗传物质主要定位于线粒体中,线粒体在心肌细胞中的拷贝数较多,而mcfDNA是受损伤的线粒体经过线粒体融合、裂变和自噬后进入循环系统的线粒体DNA片段 [ 10 , 15 ]。mcfDNA有两种来源:第一,细胞凋亡或坏死后释放;第二,通过细胞DNA的活性代谢分泌产生 [ 18 ]。在健康状态下,人体内的mcfDNA保持在较低水平,当mcfDNA的表达水平显著升高时,往往意味着机体可能正处于某种病理状态 [ 19 ]。既往研究显示在急性心肌梗死、心力衰竭、房颤、创伤、恶性肿瘤等众多疾病患者中,mcfDNA水平相比健康对照组显著升高 [ 20 , 21 , 22 , 23 , 24 ]。Cosentino等 [ 25 ]研究发现心肌梗死患者mcfDNA水平明显高于非心肌梗死患者及健康人群。Qin等 [ 26 ]在急性心肌梗死病例中发现mcfDNA水平升高,并与炎性标志物水平呈正相关。Nakayama和Otsu [ 27 ]提出mcfDNA拷贝数升高可以反映心肌细胞的损伤程度。mcfDNA作为一种非侵入性的生物标志物,展现出广阔的应用前景。鉴于此,本课题前瞻性研究了小年龄、低体重CHD体外循环手术患儿的临床资料及不同时间点的mcfDNA水平,以探究小年龄、低体重体外循环下CHD患儿不同预后组中mcfDNA的差异和mcfDNA水平对不良预后的预测价值。
CHD患儿的心脏较长时间承受异常的血流动力学压力,心肌细胞会受到机械应力等损伤,最终导致心肌细胞的凋亡和心肌纤维化的发生,受损的心肌细胞会释放mcfDNA [ 28 ]。本研究发现切皮前预后不良组mcfDNA水平高于预后良好组,考虑可能与预后不良组多为病情危重患儿,术前心肌细胞受损更为严重,并释放出更多mcfDNA有关。
体外循环是CHD手术中不可或缺的重要组成部分,可最大限度地减少机体的缺血性损伤。然而,体外循环可造成血细胞破坏、心肌细胞缺血再灌注损伤,释放多种细胞因子,激发炎性反应、血管渗漏和多器官功能障碍等多种并发症 [ 29 ]。本研究显示,体外循环结束即刻、体外循环后12 h、体外循环后24 h这3个时间点预后不同的两组患儿间mcfDNA水平差异均有统计学意义。由于切皮前两组间也存在差异,为排除疾病严重程度,即两组患儿术前mcfDNA基础值对体外循环后各时间点mcfDNA的影响,本团队对纳入患儿的术前、体外循环后即刻mcfDNA水平差异性进行纵向分析,发现体外循环后即刻的mcfDNA水平显著高于术前,差异具有统计学意义( P=0.008),提示无论疾病严重程度,体外循环手术对CHD患儿的mcfDNA水平是有明显影响的。尽管体外循环术后mcfDNA水平升高,但在本研究中,预后良好与预后不良两组术后mcfDNA水平呈现出不同的变化趋势,预后不良组mcfDNA拷贝数在体外循环期间上升,在体外循环后12 h显著升高并达到峰值,之后趋于下降。这与Qin等 [ 30 ]研究不同时间点体外循环辅助下冠脉搭桥术患者的mcfDNA拷贝数变化趋势有相似之处。目前相较于其他心血管疾病的研究,体外循环辅助下CHD围手术期mcfDNA变化趋势仍缺乏大宗病例研究。
此外,本研究分析了mcfDNA水平对小年龄、低体重体外循环下CHD患儿不良预后的预测价值,通过绘制不同时间点mcfDNA水平与预后的ROC曲线,发现体外循环后24 h的AUC最大,为0.906(95% CI 0.818~0.994, P<0.001),提示体外循环后24 h mcfDNA水平对小年龄、低体重体外循环下CHD不良预后的预测性能最佳,其最优灵敏度和特异度分别为83.3%和85.1%,预测阈值为19 533 copies/μl。本研究结果与2021年Scott等 [ 15 ]的研究相似之处是都发现mcfDNA在体外循环后12~24 h期间达到峰值,不同的是他们认为体外循环后12 h的mcfDNA对不良预后的预测性能最佳。
另外,本研究所测的mcfDNA拷贝数值远高于其他研究,是因为本研究采用的是磁珠法提取血浆游离DNA(cell free DNA,cfDNA),而其他研究采用的是过柱法,磁珠法对cfDNA的回收率高于过柱法 [ 31 ],因此后续检测出的mcfDNA水平也会高于过柱法研究结果。
综上所述,本文通过对小年龄、低体重CHD体外循环手术患儿不同预后组中mcfDNA水平的差异、不同时间点mcfDNA对不良预后的预测价值进行前瞻性研究,发现预后不良组患儿mcfDNA水平显著高于预后良好组,两组呈现不同的变化趋势。体外循环后24 h mcfDNA水平对体外循环下CHD不良预后的预测性能最佳。本研究属于单中心研究,下一步拟进行大宗病例、多中心联合深入研究,以期探索出有效的早期评估措施和干预手段,从而进一步提高小年龄、低体重CHD患儿的治愈率,减轻患儿家庭和社会的负担。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Namuyonga J , Lubega S , Aliku T ,et al. Pattern of congenital heart disease among children presenting to the Uganda Heart Institute, Mulago Hospital: a 7-year review[J]. Afr Health Sci, 2020,20(2):745-752. DOI: 10.4314/ahs.v20i2.26 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
陈寄梅,庄建,刘小清,. 先天性心脏病产前产后 " 一体化 " 诊疗模式中国专家共识 [J]. 中国心血管病研究, 2022,20(2):97-103. DOI: 10.3969/j.issn.1672-5301.2022.02.001
返回引文位置Google Scholar
百度学术
万方数据
Chen JM , Zhuang J , Liu XQ ,et al. The integrated pre- and post-natal management program on congenital heart disea se: a consensus of Chinese experts [J]. Chin J Cardiovasc Res, 2022,20(2):97-103. DOI: 10.3969/j.issn.1672-5301.2022.02.001
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[3]
马鞅,刘海燕,李青,. 小年龄低体重先天性心脏病体外循环术后肝素治疗与凝血功能的关系[J]. 中华小儿外科杂志, 2023,44(12):1081-1086. DOI: 10.3760/cma.j.cn421158-20230926-00368 .
返回引文位置Google Scholar
百度学术
万方数据
Ma Y , Liu HY , Li Q ,et al. Relationship between heparin dosing and coagulation tests after cardiopulmonary bypass in young infants with congenital heart disease and low birth weight[J]. Chin J Pediatr Surg, 2023,44(12):1081-1086. DOI: 10.3760/cma.j.cn421158-20230926-00368 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[4]
王双兴,孟兵,屈昕芃,. 先天性心脏病合并其他畸形同期联合手术可行性分析[J]. 中华胸心血管外科杂志, 2022,38(3):175-183. DOI: 10.3760/cma.j.cn112434-20201020-00472 .
返回引文位置Google Scholar
百度学术
万方数据
Wang SX , Meng B , Qu XP ,et al. Feasibility analysis of simultaneous combined operation for congenital heart disease with other malformations[J]. Chin J Thorac Cardiovasc Surg, 2022,38(3):175-183. DOI: 10.3760/cma.j.cn112434-20201020-00472 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[5]
Kotani Y , Kataoka Y , Izawa J ,et al. High versus low blood pressure targets for cardiac surgery while on cardiopulmonary bypass[J]. Cochrane Database Syst Rev, 2022,11(11):CD013494. DOI: 10.1002/14651858.CD013494.pub2 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
孙侠,赵倩茹,袁伟. 心肌线粒体能量代谢在心血管疾病中的研究进展[J]. 中国心血管杂志, 2022,27(1):90-93. DOI: 10.3969/j.issn.1007-5410.2022.01.017 .
返回引文位置Google Scholar
百度学术
万方数据
Sun X , Zhao QR , Yuan W . Advancement of myocardial mitochondrial energy metabolism in cardiovascular diseases[J]. Chin J Cardiovasc Med, 2022,27(1):90-93. DOI: 10.3969/j.issn.1007-5410.2022.01.017 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[7]
Xia YX , Gao BH , Zhang X . Targeting mitochondrial quality control of T cells: Regulating the immune response in HCC[J]. Front Oncol, 2022,12:993437. DOI: 10.3389/fonc.2022.993437 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Duan PY , Liu Y , Lin XY ,et al. Extracellular matrix stiffness induces mitochondrial morphological heterogeneity via AMPK activation[J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2024,55(1):47-52. DOI: 10.12182/20240160504 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Duran J , Martinez A , Adler E . Cardiovascular manifestations of mitochondrial disease[J]. Biology, 2019,8(2):34. DOI: 10.3390/biology8020034 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Bikomeye JC , Terwoord JD , Santos JH ,et al. Emerging mitochondrial signaling mechanisms in cardio-oncology: beyond oxidative stress[J]. Am J Physiol Heart Circ Physiol, 2022,323(4):H702-H720. DOI: 10.1152/ajpheart.00231.2022 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Wu BW , Ni HC , Li J ,et al. The impact of circulating mitochondrial DNA on cardiomyocyte apoptosis and myocardial injury after TLR4 activation in experimental autoimmune myocarditis[J]. Cell Physiol Biochem, 2017,42(2):713-728. DOI: 10.1159/000477889 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Baysa A , Fedorov A , Kondratov K ,et al. Release of mitochondrial and nuclear DNA during on-pump heart surgery: kinetics and relation to extracellular vesicles[J]. J Cardiovasc Transl Res, 2019,12(3):184-192. DOI: 10.1007/s12265-018-9848-3 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Zajonz T , Koch C , Schwiddessen J ,et al. Minimized extracorporeal circulation is associated with reduced plasma levels of free-circulating mito chondrial DNA compared to conventional cardiopulmonary bypass: a secondary analysis of an exploratory, prospective, interventional study [J]. J Clin Med, 2022,11(11):2994. DOI: 10.3390/jcm11112994 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Krychtiuk KA , Wurm R , Ruhittel S ,et al. Release of mitochondrial DNA is associated with mortality in severe acute heart failure[J]. Eur Heart J Acute Cardiovasc Care, 2020,9(5):419-428. DOI: 10.1177/2048872618823405 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Scott JP , Tanem JM , Tomita-Mitchell A ,et al. Elevated nuclear and mitochondrial cell-free deoxyribonucleic acid measurements are associated with death after infant cardiac surgery[J]. J Thorac Cardi ovasc Surg , 2022,164(2):367-375. DOI: 10.1016/j.jtcvs.2021.10.066 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Ding ZF , Liu SJ , Wang XW ,et al. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis[J]. Sci Rep, 2013,3:1077. DOI: 10.1038/srep01077 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Liu YJ , Chen S , Zühlke L ,et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies[J]. Int J Epidemiol, 2019,48(2):455-463. DOI: 10.1093/ije/dyz009 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Rehman A , Kumari R , Kamthan A ,et al. Cell-free circulating mitochondrial DNA: an emerging biomarker for airborne particulate matter associated with cardiovascular diseases[J]. Free Radic Biol Med, 2023,195:103-120. DOI: 10.1016/j.freeradbiomed.2022.12.083 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
周亮,谭利平. 线粒体DNA在脓毒症相关性ALI/ARDS发病机制中的作用[J]. 中华危重病急救医学, 2020,32(2):253-256. DOI: 10.3760/cma.j.cn121430-20190905-00050 .
返回引文位置Google Scholar
百度学术
万方数据
Zhou L , Tan LP . Role of mitochondrial DNA in acute lung injury/acute respiratory distress syndrome induced by sepsis [J]. Chin Crit Care Med, 2020,32(2):253-256. DOI: 10.3760/cma.j.cn121430-20190905-00050 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[20]
Barbalata T , Scarlatescu AI , Sanda GM ,et al. Mitochondrial DNA together with miR-142-3p in plasma can predict unfavorable outcomes in patients after acute myocardial infarction[J]. Int J Mol Sci, 2022,23(17):9947. DOI: 10.3390/ijms23179947 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Mansueto G , Benincasa G , Della Mura N ,et al. Epigenetic-sensitive liquid biomarkers and personalised therapy in advanced heart failure: a focus on cell-free DNA and microRNAs[J]. J Clin Patho l , 2020,73(9):535-543. DOI: 10.1136/jclinpath-2019-206404 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Sandler N , Kaczmarek E , Itagaki K ,et al. Mitochondrial DAMPs are released during cardiopulmonary bypass surgery and are associated with postoperative atrial fibrillation[J]. Heart Lung Circ, 2018,27(1):122-129. DOI: 10.1016/j.hlc.2017.02.014 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Marcatti M , Saada J , Okereke I ,et al. Quantification of circulating cell free mitochondrial DNA in extracellular vesicles with PicoGreen™ in liquid biopsies: fast assessment of disease/trauma severity[J]. Cells, 2021,10(4):819. DOI: 10.3390/cells10040819 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Johnson P , Zhou Q , Dao DY ,et al. Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma[J]. Nat Rev Gastroenterol Hepatol, 2022,19(10):670-681. DOI: 10.1038/s41575-022-00620-y .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Cosentino N , Campodonico J , Pontone G ,et al. Iron deficiency in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention[J]. Int J Cardiol, 2020,300:14-19. DOI: 10.1016/j.ijcard.2019.07.083 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Qin CY , Gu J , Liu RQ ,et al. Release of mitochondrial DNA correlates with peak inflammatory cytokines in patients with acute myocardial infarction[J]. Anatol J Cardiol, 2017,17(3):224-228. DOI: 10.14744/AnatolJCardiol.2016.7209 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Nakayama H , Otsu K . Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases[J]. Biochem J, 2018,475(5):839-852. DOI: 10.1042/BCJ20170714 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Rouatbi H , <x>Farha</x> <x>t</x> N , Heying R ,et al. Right atrial myocardial remodeling in children with atrial septal defect involves inflammation, growth, fibrosis, and apoptosis[J]. Front Pediatr, 2020,8:40. DOI: 10.3389/fped.2020.00040 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Hsieh L , Tu LN , Paquette A ,et al. MicroRNA expression levels change in neonatal patients during and after exposure to cardiopulmonary bypass[J]. J Am Heart Assoc, 2022,11(17):e025864. DOI: 10.1161/JAHA.122.025864 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Qin CY , Liu RQ , Gu J ,et al. Variation of perioperative plasma mitocho ndrial DNA correlate with peak inflammatory cytokines caused by cardiac surgery with cardiopulmonary bypass [J]. J Cardiothorac Surg, 2015,10:85. DOI: 10.1186/s13019-015-0298-6 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Raymond CK , Raymond FC , Hill K . UltraPrep is a scalable, cost-effective, bead-based method for purifying cell-free DNA[J]. PLoS One, 2020,15(6):e0231854. DOI: 10.1371/journal.pone.0231854 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
刘彩霞,Email: mocdef.3ab616xcuilyyte
B
所有作者均声明不存在利益冲突
C
山西省"四个一批"医学重点科研项目 (2022XM20)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号