智能骨科
ENGLISH ABSTRACT
人工智能在前交叉韧带损伤诊疗中的研究进展
丁源
徐文龙
张杰
薛子超
作者及单位信息
·
DOI: 10.3760/cma.j.cn115530-20240830-00350
Research progress concerning artificial intelligence in the diagnosis and treatment of anterior cruciate ligament injury
Ding Yuan
Xu Wenlong
Zhang Jie
Xue Zichao
Authors Info & Affiliations
Ding Yuan
Department of Sports Medicine, Qingdao Municipal Hospital, Qingdao 266071, China
Xu Wenlong
Department of Rehabilitation Medicine, Qingdao Municipal Hospital, Qingdao 266071
Zhang Jie
The Third Clinical College, Qingdao University, Qingdao 266071, China
Xue Zichao
Department of Sports Medicine, Qingdao Municipal Hospital, Qingdao 266071, China
·
DOI: 10.3760/cma.j.cn115530-20240830-00350
49
10
0
0
0
0
PDF下载
APP内阅读
摘要

前交叉韧带(ACL)损伤是膝关节的常见疾病,影响膝关节的稳定性。作为一个新兴领域,人工智能(AI)近年来在ACL损伤的诊断与治疗方面发展迅速,可以提高ACL损伤诊断与治疗全过程的准确性和时效性,改善预后。本文拟对AI在ACL损伤的诊断、ACL重建术中的应用、术后结局预测及术后康复等方面的研究进展进行综述,以期提高ACL损伤诊断与治疗的成功率,使患者及时重返运动,为改善患者结局提供前沿技术支持。

前交叉韧带;创伤和损伤;人工智能;诊断;治疗结果
ABSTRACT

Anterior cruciate ligament (ACL) injury is a common disease of the knee joint, which affects the stability of the knee joint. As an emerging field, artificial intelligence (AI) has developed rapidly in the diagnosis and treatment of ACL injury in recent years, improving the accuracy and timeliness of the whole diagnosis and treatment process to improve the prognosis of ACL injury. This article reviews the research progress of AI in diagnosis of ACL injury, ACL reconstruction, prediction of postoperative outcomes, and postoperative rehabilitation. We hope this information may help surgeons to improve the success rate of AI in diagnosis and treatment of ACL injury and provide cutting-edge technical support to improve patient outcomes.

Anterior cruciate ligament;Wounds and injuries;Artificial intelligence;Diagnosis;Treatment outcome
Xue Zichao, Email: mocdef.3ab610322_hczx
引用本文

丁源,徐文龙,张杰,等. 人工智能在前交叉韧带损伤诊疗中的研究进展[J]. 中华创伤骨科杂志,2025,27(03):258-265.

DOI:10.3760/cma.j.cn115530-20240830-00350

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
前交叉韧带(anterior cruciate ligament, ACL)作为膝关节的重要稳定系统,其主要功能是通过防止胫骨前移和内旋来维持膝关节的正常运动功能 [ 1 ]。ACL损伤或严重松弛可导致膝关节不稳,使膝关节面的接触面积和剪切力发生变化,进而导致软骨损伤、半月板损伤及远期膝关节骨关节炎等 [ 2 ]。ACL损伤占所有膝关节损伤的50%,患者主要为参加篮球、足球、滑雪及排球等体育活动的年轻人,估计每10 000次运动就会出现6.5例ACL损伤 [ 3 ]。目前,ACL重建手术技术已较为成熟,该手术旨在改善膝关节的生物力学不稳,在美国每年进行约130 000例ACL重建手术,每年的花费估计为10亿美元 [ 4 ]
ACL损伤患者的数量大,功能要求高。因此,及时、准确地诊断及早期干预对恢复膝关节稳定性和功能至关重要 [ 5 ]。近年来,人工智能(artificial intelligence, AI)的发展突飞猛进,在医学中的应用更是越来越广泛,具体到ACL损伤诊疗方面,AI也有了长足的进步。本文拟对AI在ACL损伤诊断、ACL重建术中的应用、术后结局预测及术后康复等方面进行综述,以期提高ACL损伤诊断与治疗的成功率,使患者及时重返运动,为改善患者结局提供前沿技术支持。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Veltri DM , Deng XH , Torzilli PA ,et al. The role of the cruciate and posterolateral ligaments in stability of the knee. A biomechanical study[J]. Am J Sports Med, 1995,23(4):436-443. DOI: 10.1177/036354659502300411 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
李晓波,李翰林,卢佳俊,. 前交叉韧带重建股骨骨道定位研究进展[J]. 中国修复重建外科杂志, 2024,38(4):498-504. DOI: 10.7507/1002-1892.202401121 .
返回引文位置Google Scholar
百度学术
万方数据
Li XB , Li HL , Lu JJ ,et al. Research progress of fem oral bone tunnel positioning in anterior cruciate ligament reconstruction [J]. Chinese Journal of Reparative and Reconstructive Surgery, 2024,38(4):498-504. DOI: 10.7507/1002-1892.202401121 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[3]
Kwee RM , Hafezi-Nejad N , Roemer FW ,et al. Association of mucoid degeneration of the anterior cruciate ligament at MR imaging with medial tibiofemoral osteoarthritis progression at radiography: data from the osteoarthritis initiative[J]. Radiology, 2018,287(3):912-921. DOI: 10.1148/radiol.2018171565 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Mall NA , Chalmers PN , Moric M ,et al. Incidence and trends of anterior cruciate ligament reconstruction in the Unite d States [J]. Am J Sports Med, 2014,42(10):2363-2370. DOI: 10.1177/0363546514542796 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
冯建豪,徐一宏,徐卫东. 前交叉韧带初次修复术的发展和临床意义[J]. 中华创伤骨科杂志, 2024,26(6):547-552. DOI: 10.3760/cma.j.cn115530-20240112-00021 .
返回引文位置Google Scholar
百度学术
万方数据
Feng JH , Xu YH , Xu WD . Development and clinical significance of primary repair of anterior cruciate ligament[J]. Chin J Orthop Trauma, 2024,26(6):547-552. DOI: 10.3760/cma.j.cn115530-20240112-00021 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[6]
McCarthy J , Minsky ML , Rochester N ,et al. A proposal for the dartmouth summer research project on artificial intelligence[EB/OL]. ( 1955-08-31)[2024-08-05]. http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html.
返回引文位置Google Scholar
百度学术
万方数据
[7]
Morris MX , Fiocco D , Caneva T ,et al. Current and future applications of artificial intelligence in surgery: implications for clinical practice and research[J]. Front Surg, 2024,11:1393898. DOI: 10.3389/fsurg.2024.1393898 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Kuo RYL , Harrison C , Curran TA ,et al. Artificial intelligence in fracture detection: a systematic review and meta-analysis[J]. Radiology, 2022,304(1):50-62. DOI: 10.1148/radiol.211785 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Choy G , Khalilzadeh O , Michalski M ,et al. Current applications and future impact of machine learning in radiology[J]. Radiology, 2018,288(2):318-328. DOI: 10.1148/radiol.2018171820 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Do S , Song KD , Chung JW . Basics of deep learning: a radiologist ' s guide to understanding published radiology articles on deep learning [J]. Korean J Radiol, 2020,21(1):33-41. DOI: 10.3348/kjr.2019.0312 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Shantanu K , Singh S , Srivastava S ,et al. The validation of clinical examination and MRI as a diagnostic tool for cruciate ligaments and meniscus injuries of the knee against diagnostic arthroscopy[J]. Cureus, 2021,13(6):e15727. DOI: 10.7759/cureus.15727 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Quatman CE , Hettrich CM , Schmitt LC ,et al. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review[J]. Am J Sports Med, 2011,39(7):1557-1568. DOI: 10.1177/0363546511407612 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Quatman CE , Hettrich CM , Schmitt LC ,et al. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review[J]. Am J Sports Med, 2011,39(7):1557-1568. DOI: 10.1177/0363546511407612 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Štajduhar I , Mamula M , Mileti D ,et al. Semi-automated detection of anterior cruciate ligament injury from MRI[J]. Comput Methods Programs Biomed, 2017,140:151-164. DOI: 10.1016/j.cmpb.2016.12.006 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Liu F , Zhou Z , Jang H ,et al. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging[J]. Magn Reson Med, 2018,79(4):2379-2391. DOI: 10.1002/mrm.26841 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Norman B , Pedoia V , Majumdar S . Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry[J]. Radiology, 2018,288(1):177-185. DOI: 10.1148/radiol.2018172322 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Flannery SW , Kiapour AM , Edgar DJ ,et al. A transfer learning approach for automatic segmentation of the surgically treated anterior cruciate ligament[J]. J Orthop Res, 2022,40(1):277-284. DOI: 10.1002/jor.24984 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Gillies RJ , Kinahan PE , Hricak H . Radiomics: images are more than pictures, they are data[J]. Radiology, 2016,278(2):563-577. DOI: 10.1148/radiol.2015151169 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Fritz B , Yi PH , Kijowski R ,et al. Radiomics and deep learning for disease detection in musculoskeletal radiology: an overview of novel MRI- and CT-based approaches[J]. Invest Radiol, 2023,58(1):3-13. DOI: 10.1097/RLI.0000000000000907 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Liu F , Guan B , Zhou Z ,et al. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning[J]. Radiol Artif Intell, 2019,1(3):180091. DOI: 10.1148/ryai.2019180091 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Chang PD , Wong TT , Rasiej MJ . Deep learning for detection of complete anterior cruciate ligament tear[J]. J Digit Imaging, 2019,32(6):980-986. DOI: 10.1007/s10278-019-00193-4 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Bien N , Rajpurkar P , Ball RL ,et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet[J]. PLoS Med, 2018,15(11):e1002699. DOI: 10.1371/journal.pmed.1002699 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Wang D , Yan Y . Improving inceptionV4 model based on fractional-order snow leopard optimization algorithm for diagnosing of ACL tears[J]. Sci Rep, 2024,14(1):9843. DOI: 10.1038/s41598-024-60419-6 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Tamimi I , Ballesteros J , Lara AP ,et al. A prediction model for primary anterior cruciate ligament injury using artificial intelligence[J]. Orthop J Sports Med, 2021,9(9):23259671211027543. DOI: 10.1177/23259671211027543 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Al-Nasser S , Noroozi S , Harvey A ,et al. Exploring the performance of an artificial intelligence-based load sensor for total knee replacements[J]. Sensors (Basel), 2024,24(2):585. DOI: 10.3390/s24020585 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Salman LA , Khatkar H , Al-Ani A ,et al. Reliability of artificial intelligence in predicting total knee arthroplasty component sizes: a systematic review[J]. Eur J Orthop Surg Traumatol, 2024,34(2):747-756. DOI: 10.1007/s00590-023-03784-8 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Jonmohamadi Y , Takeda Y , Liu F ,et al. Automatic segmentation of multiple structures in knee arthroscopy using deep learning[J]. IEEE Access, 2020,PP(99):1. DOI: 10.1109/ACCESS.2020.2980025 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
李奕扬,马剑雄,马信龙,. 人工智能技术应用于骨科机器人辅助术中导航的研究进展[J]. 中华创伤骨科杂志, 2023,25(1):88-92. DOI: 10.3760/cma.j.cn115530-20221018-00519 .
返回引文位置Google Scholar
百度学术
万方数据
Li YY , Ma JX , Ma XL ,et al. Research progress in application of artificial intelligence to intraoperative navigation assisted by an orthopedic robot[J]. Chin J Orthop Trauma, 2023,25(1):88-92. DOI: 10.3760/cma.j.cn115530-20221018-00519 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[29]
McDonald LS , Boorman-Padgett J , Kent R ,et al. ACL deficiency increases forces on the medial femoral condyle and the lateral meniscus with applied rotatory loads[J]. J Bone Joint Surg Am, 2016,98(20):1713-1721. DOI: 10.2106/JBJS.15.00878 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Beynnon BD , Fleming BC , Labovitch R ,et al. Chronic anterior cruciate ligament deficiency is associated with increased anterior translation of the tibia during the transition from non-weightbearing to weightbearing[J]. J Orthop Res, 2002,20(2):332-327. DOI: 10.1016/S0736-0266(01)00115-2 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Lu Y , Jurgensmeier K , Till SE ,et al. Early ACLR and risk and timing of secondary meniscal injury compared with delayed ACLR or non-operative treatment: a time-to-event analysis using machine learning[J]. Am J Sports Med, 2022,50(13):3544-3556. DOI: 10.1177/03635465221124258 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Webster KE , Feller JA , Leigh WB ,et al. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction[J]. Am J Sports Med, 2014,42(3):641-647. DOI: 10.1177/0363546513517540 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Paterno MV , Rauh MJ , Schmitt LC ,et al. Incidence of Second ACL injuries 2 years after primary ACL reconstruction and return to sport[J]. Am J Sports Med, 2014,42(7):1567-1573. DOI: 10.1177/0363546514530088 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Grassi A , Kim C , Marcheggiani Muccioli GM ,et al. What is the mid-term failure rate of revision ACL reconstruction? A systematic review[J]. Clin Orthop Relat Res, 2017,475(10):2484-2499. DOI: 10.1007/s11999-017-5379-5 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Han M , Singh M , Karimi D ,et al. LigaNET: a multi-modal deep learning approach to predict the risk of subsequent anterior cruciate ligament injury after surgery[J]. medRxiv, 2023:.
返回引文位置Google Scholar
百度学术
万方数据
[36]
Martin RK , <x>Wastv</x> <x>edt</x> S , Pareek A ,et al. Predicting anterior cruciate ligament reconstruction revision: a machine learning analysis utilizing the norwegian knee ligament register[J]. J Bone Joint Surg Am, 2022,104(2):145-153. DOI: 10.2106/JBJS.21.00113 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Kemler B , Coladonato C , Sonnier JH ,et al. Evaluation of failed ACL reconstruction: an updated review[J]. Open Access J Sports Med, 2024,15:29-39. DOI: 10.2147/OAJSM.S427332 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Lu Y , Pareek A , Yang L ,et al. Deep learning artificial intelligence tool for automated radiographic determination of posterior tibial slope in patients with ACL injury [J]. Orthop J Sports Med, 2023,11(12):23259671231215820. DOI: 10.1177/23259671231215820 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
MARS Group, Vasavada K . Paper 42: a novel machine learning (ML) algorithm to predict outcomes after revision ACLR (rACLR) in the multicenter anterior cruciate ligament reconstruction study (MARS) cohort[J]. Orthop J Sports Med, 2023,11(7):suppl 3. 2325967123S 00068DOI: 10.1177/2325967123S00068 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
毛健宇,李彦林,王国梁,. 减张技术解剖重建前交叉韧带结合术后快速康复治疗前交叉韧带断裂[J]. 中华创伤骨科杂志, 2018,20(1):38-44. DOI: 10.3760/cma.j.issn.1671-7600.2018.01.007 .
返回引文位置Google Scholar
百度学术
万方数据
Mao JY , Li YL , Wang GL ,et al. Anterior cruciate ligament tear treated by arthroscopic tension-relieving reconstruction and enhanced recovery after surgery[J]. Chin J Orthop Trauma, 2018,20(1):38-44. DOI: 10.3760/cma.j.issn.1671-7600.2018.01.007 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[41]
Andriollo L , Picchi A , Sangaletti R ,et al. The role of artificial intelligence in anterior cruciate ligament injuries: current concepts and future perspectives[J]. Healthcare (Basel), 2024,12(3):300. DOI: 10.3390/healthcare12030300 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Kokkotis C , Moustakidis S , Tsatalas T ,et al. Leveraging explainable machine learning to identify gait biomechanical parameters associated with anterior cruciate ligament injury[J]. Sci Rep, 2022,12(1):6647. DOI: 10.1038/s41598-022-10666-2 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Daggett MC , Witte KA , Cabarkapa D ,et al. Evidence-based data models for return-to-play criteria after anterior cruciate ligament reconstruction[J]. Healthcare (Basel), 2022,10(5):929. DOI: 10.3390/healthcare10050929 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Pillitteri G , Petrigna L , Ficarra S ,et al. Relationship between external and internal load indicators and injury using machine learning in professional soccer: a systematic review and meta-analysis[J]. Res Sports Med, 2024,32(6):902-938. DOI: 10.1080/15438627.2023.2297190 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Liao WJ , Lee KT , Chiang LY ,et al. Postoperative rehabilitation after anterior cruciate ligament reconstruction through telerehabilitation with artificial intelligence brace during COVID-19 pandemic[J]. J Clin Med, 2023,12(14):4865. DOI: 10.3390/jcm12144865 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Rossi SMP , Panzera RM , Sangaletti R ,et al. Problems and opportunities of a smartphone-based care management platform: application of the wald principles to a survey-based analysis of patients ' perception in a pilot center [J]. Healthcare (Basel), 2024,12(2):153. DOI: 10.3390/healthcare12020153 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Muelly MC , Stoddard PB , Vasanwala SS . Using machine learning with dynamic exam block lengths to decrease patient wait time and optimize MRI schedule fill rate[C/OL]// The ISMRM 25th Annual Meeting & Exhibition, Hawai ' i Convention Center ,Honolulu, HI, USA, 2017.[ 2024-08-06]. https://archive.ismrm.org/2017/4343.html.
返回引文位置Google Scholar
百度学术
万方数据
[48]
Chong LR , Tsai KT , Lee LL ,et al. Artificial intelligence predictive analytics in the management of outpatient MRI appointment no-shows [J]. AJR Am J Roentgenol, 2020,215(5):1155-1162. DOI: 10.2214/AJR.19.22594 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
叶卓俊,沈艳丽,江晓,. 医学人工智能领域伦理治理重点研究[J]. 中国医学伦理学, 2024,37(1):39-44. DOI: 10.12026/j.issn.1001-8565.2024.01.05 .
返回引文位置Google Scholar
百度学术
万方数据
Ye ZJ , Shen YL , Jiang X ,et al. Research on the focus of ethical governance in the field of artificial intelligence in medicine[J]. Chinese Medical Ethics, 2024,37(1):39-44. DOI: 10.12026/j.issn.1001-8565.2024.01.05 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[50]
Zhang J , Zhang ZM . Ethics and governance of trustworthy medical artificial intelligence[J]. BMC Med Inform Decis Mak, 2023,23(1):7. DOI: 10.1186/s12911-023-02103-9 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Char DS , Shah NH , Magnus D . Implementing machine learning in health care-addressing ethical challenges[J]. N Engl J Med, 2018,378(11):981-983. DOI: 10.1056/NEJMp1714229 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Howard A , Borenstein J . The ugly truth about ourselves and our robot creations: the problem of bias and social inequity[J]. Sci Eng Ethics, 2018,24(5):1521-1536. DOI: 10.1007/s11948-017-9975-2 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Mooney SJ , Pejaver V . Big data in public health: terminology, machine learning, and privacy[J]. Annu Rev Public Health, 2018,39:95-112. DOI: 10.1146/annurev-publhealth-040617-014208 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Willemink MJ , Koszek WA , Hardell C ,et al. Preparing medical imaging data for machine learning[J]. Radiology, 2020,295(1):4-15. DOI: 10.1148/radiol.2020192224 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Umapathy VR , Rajinikanth BS , Samuel Raj RD ,et al. Perspective of artificial intelligence in disease diagnosis: a review of current and future endeavours in the medical field[J]. Cureus, 2023,15(9):e45684. DOI: 10.7759/cureus.45684 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
van Royen FS , Asselbergs FW , Alfonso F ,et al. Five critical quality criteria for artificial intelligence-based prediction models[J]. Eur Heart J, 2023,44(46):4831-4834. DOI: 10.1093/eurheartj/ehad727 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Zhou HY , Yu Y , Wang C ,et al. A transformer-based representation-learning model with unified processing of multimodal input for clinical diagnostics[J]. Nat Biomed Eng, 2023,7(6):743-755. DOI: 10.1038/s41551-023-01045-x .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
薛子超,Email: mocdef.3ab610322_hczx
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号