口腔美学研究
ENGLISH ABSTRACT
兼具脱矿与变色特性的人工龋影响牙本质模型的建立与表征
梁圣洁
李欣洋
姚陈敏
黄翠
作者及单位信息
·
DOI: 10.3760/cma.j.cn112144-20241226-00505
Establishment and characterization of an artificial caries-affected dentin model with demineralization and discoloration
Liang Shengjie
Li Xinyang
Yao Chenmin
Huang Cui
Authors Info & Affiliations
Liang Shengjie
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
Li Xinyang
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
Yao Chenmin
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
Huang Cui
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
·
DOI: 10.3760/cma.j.cn112144-20241226-00505
107
30
0
0
0
1
PDF下载
APP内阅读
摘要

目的探讨兼具脱矿与变色特性的人工龋影响牙本质(ACAD)模型的建立、结构特征及其粘接界面的特点,以期为龋影响牙本质的粘接修复研究提供模型基础。

方法收集完整无龋第三磨牙100颗[武汉大学口腔医(学)院口腔颌面外科提供],制备为5 mm厚牙本质样本,筛选后分为三部分。一部分牙本质样本经细菌生物膜致龋后,用600目砂纸分别研磨0、12、24、36和48 s,得到5组不同层次的人工牙本质龋(ACD)(ACD-研磨0、12、24、36、48 s组),以正常牙本质为对照组,进行细菌可视化观察(每组3颗)和脱矿分析实验(显微CT、拉曼光谱和表面显微硬度测试,每组3颗),以确定ACAD制备参数。一部分牙本质样本分为对照组(正常牙本质)、人工龋感染牙本质(ACD研磨0 s)和ACAD组(由前述实验确定的ACAD制备参数制作),进行颜色测量(每组10颗)、拉曼光谱分析(每组6颗)和扫描电镜观察(每组1颗),以对比3种牙本质的颜色特性、化学组成与结构、微观形貌。剩余牙本质样本分为正常牙本质组和ACAD组(每组6颗),经自酸蚀粘接后,采用电子探针显微分析仪(EPMA)进行粘接界面表征。

结果ACD-研磨0 s组牙本质小管内细菌侵入深度为(142.4±25.8)μm,ACD-研磨12 s组牙本质小管内仍可见明显细菌。显微CT显示,ACD-研磨0 s组牙本质脱矿深度为(283.9±25.6)μm,ACD-研磨36 s组牙本质脱矿深度为(139.2±27.9)μm,ACD-研磨48 s组牙本质表面部分区域近似正常牙本质。ACD-研磨24 s组和ACD-研磨36 s组磷酸盐与酰胺Ⅰ峰值比[分别为4.2(3.2,6.7)、6.7(6.0,7.7)]差异有统计学意义( P<0.05)。ACD-研磨24 s组与ACD-研磨36 s组牙本质表面显微硬度[分别为8.3(7.0,10.2)和10.2(9.1,11.4)HV]差异无统计学意义( P>0.05)。根据前述实验结果,确定ACAD制备参数为ACD研磨36 s。ACAD组明度(L *值)(76.69±2.54)和黄蓝色品(b *值)(33.15±1.89)均显著小于对照组(分别为85.23±1.68和35.87±1.55)(均 P<0.05),红绿色品(a *值)(5.38±1.20)显著大于对照组(0.71±0.86)( P<0.05)。此外,ACAD组拉曼光谱胶原结构参数(酰胺Ⅲ和亚甲基峰值比)(1.089 7±0.038 5)显著大于对照组(0.985 2±0.020 1)( P<0.05)。EPMA显示,自酸蚀粘接模式下,ACAD组混合层厚度[(4.72±1.03)μm]显著大于正常牙本质组[(3.02±0.66)μm]( F=21.09, P<0.001)。

结论牙本质经生物膜致龋后研磨36 s可制得ACAD,该模型具备部分脱矿、变色和胶原结构改变的特征,可用于龋影响牙本质粘接研究。

龋齿;牙本质;生物膜;牙粘合;牙本质龋;模型
ABSTRACT

ObjectiveTo investigate the establishment, structural, and bonding interface characteristics of an artificial caries-affected dentin model with demineralization and discoloration as a basis of research on caries-affected dentin bonding repair.

MethodsOne hundred intact molars without caries were collected (acquired from Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University from March to May 2023) and prepared as 5 mm thick dentin specimens. Then, they were screened and divided into 3 parts. One part of dentin specimens was subjected to bacterial biofilms to prepare artificial carious dentin (ACD). They were further ground by 600-grit SiC paper for 0, 12, 24, 36, and 48 s, respectively to obtain 5 groups with different layers of ACD: ACD-0, 12, 24, 36, and 48 s. Sound dentin was used as the control group. To determine the preparation parameter for artificial caries-affected dentin (ACAD), the first part of specimens was used for bacterial visualization observation ( n=3) and demineralization analysis experiments (micro-CT, Raman spectroscopy, and surface micro-hardness analyses, n=3). Another part of dentin specimens was allocated to 3 groups: control group (sound dentin), artificial caries-infected dentin group (ACD-0 s) and ACAD group (prepared according to the parameter determined by the experiments above). They were used for color tests ( n=10), Raman spectroscopy analysis ( n=6) and scanning electron microscope (SEM) observation ( n=1), thus comparing color, chemical composition and structure, and micro-morphology of 3 groups. The rest of dentin specimens were divided into 2 groups: sound dentin and ACAD ( n=6), which were bonded to composite resin with Single Bond Universal in a self-etch mode. Then, the bonding interface was measured using an electron probe micro-analyzer (EPMA).

ResultsThe depth of bacterial invasion for ACD-0 s was (142.4±25.8) μm. And obvious bacteria were observed in the dentin tubules for the ACD-12 s group. For micro-CT, the demineralization depth was (283.9±25.6) μm for ACD-0 s and (139.2±27.9) μm for ACD-36 s. The grey values in some regions of the dentin surface for ACD-48 s resembled those of sound dentin. For Raman spectroscopy, the peak ratio of phosphate to amide Ⅰ was significantly lower for ACD-24 s [4.2 (3.2,6.7)] than ACD-36 s [6.7 (6.0,7.7)] ( P<0.05). Additionally, there was no significant difference in surface micro-hardness between ACD-24 s [8.3 (7.0,10.2) HV] and ACD-36 s [10.2 (9.1,11.4) HV] ( P>0.05). The preparation parameter of ACAD was determined to be grinding for 36 s based on the experimental results above. The brightness (L * value) and the yellow-blue chromaticity (b * value) of ACAD (76.69±2.54, 33.15±1.89) were significantly lower than those of the control group (85.23±1.68, 35.87±1.55) ( P<0.05). The red-green chromaticity (a * value) of ACAD (5.38±1.20) was significantly higher than that of the control group (0.71±0.86) ( P<0.05). Moreover, the collagen structure parameter in Raman spectroscopy (the peak ratio of amide Ⅲ to CH 2) of ACAD (1.089 7±0.038 5) was significantly higher than that of the control group (0.985 2±0.020 1) ( P<0.05). As shown in EPMA, the hybrid layer of ACAD [(4.72±1.03) μm] was significantly thicker than that of sound dentin [(3.02±0.66) μm] ( F=21.09, P<0.001) in a self-etch mode.

ConclusionsACAD is established through bacterial biofilm challenges followed by grinding for 36 s. It is partly demineralized and discolored with collagen structure changes, making it suitable for research on caries-affected dentin bonding.

Dental caries;Dentin;Biofilms;Dental bonding;Carious dentin;Models
Huang Cui, Email: nc.defudabe.uhwiucgnauh, Tel: 0086-27-87686056
引用本文

梁圣洁,李欣洋,姚陈敏,等. 兼具脱矿与变色特性的人工龋影响牙本质模型的建立与表征[J]. 中华口腔医学杂志,2025,60(04):355-364.

DOI:10.3760/cma.j.cn112144-20241226-00505

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
根据结构特点,牙本质龋可分为两层,外层是细菌感染、柔软、坏死的龋感染牙本质,内层是未被细菌侵入、部分脱矿的龋影响牙本质。微创理念认为,龋病治疗中前者应被去除,后者可保留 1。临床常见的粘接基底是龋影响牙本质。与正常牙本质相比,龋影响牙本质具有部分脱矿、胶原结构改变、小管堵塞、基质金属蛋白酶活性提高等特点,导致其粘接性能下降 2。而粘接耐久性的不足,可导致边缘微渗漏,进而引起继发龋或边缘着色,影响修复体功能和美观。因此,龋影响牙本质的粘接问题亟待解决。此外,牙本质龋发展过程中晚期糖基化终末产物的积累,可促进牙本质变色 3,从而产生牙源性美学风险。为解决这些问题,学者需对牙本质龋基底进行针对性研究。天然龋综合龋发生发展中的各种反应性变化,均一性较差,难以控制混杂因素。因此,建立人工牙本质龋(artificial carious dentin,ACD)模型很有必要。在各类牙本质龋模型中,化学模型操作简单、成本低、效率高、重现性和稳定性较好,但通常仅针对牙本质龋的脱矿问题 4,而忽略微生物在龋齿形成中的作用。原位模型将待测样本固定于矫治器上,于患者口内戴用,从而使样本暴露于天然唾液和生物膜中。这类模型可受研究时间、个体差异和受试者依从性等因素的限制,此外,纳入足够多且符合纳入标准的受试者难度较大 5。而生物膜模型将微生物引入人工龋的构建中,可平衡模型的临床代表性和实验条件的可控性 5,其中,操作简单、可重复性好的单菌法已被多项研究用于评价龋影响牙本质的粘接性能 6 , 7。建立生物膜诱导的人工龋影响牙本质(artificial caries-affected dentin,ACAD)涉及人工龋感染牙本质的去除,该步骤终止界限的判定具有一定主观性,不利于实验条件的统一。本项研究探讨生物膜法构建ACAD的去龋终点,并分析ACAD的结构和粘接界面特征,以期为龋影响牙本质的粘接修复研究提供模型基础。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Kusumasari C , Abdou A , Nakajima M ,et al. Deproteinization of caries-affected dentin with chemo-mechanical caries removal agents and its effect on dentin bonding with self-etch adhesives[J]. J Dent, 2021,109:103665. DOI: 10.1016/j.jdent.2021.103665 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Matos AB , Reis M , Alania Y ,et al. Comparison of collagen features of distinct types of caries-affected dentin[J]. J Dent, 2022,127:104310. DOI: 10.1016/j.jdent.2022.104310 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Matsuda Y , Miura J , Shimizu M ,et al. Influence of nonenzymatic glycation in dentinal collagen on dental caries[J]. J Dent Res, 2016,95(13):1528-1534. DOI: 10.1177/0022034516662246 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Erdwey D , Meyer-Lueckel H , Esteves-Oliveira M ,et al. Demineralization inhibitory effects of highly concentrated fluoride dentifrice and fluoride gels/solutions on sound dentin and artificial dentin caries lesions in vitro[J]. Caries Res, 2021,55(1):41-54. DOI: 10.1159/000509931 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Zhang A , Ye N , Aregawi W ,et al. A review of mechano-biochemical models for testing composite restorations[J]. J Dent Res, 2021,100(10):1030-1038. DOI: 10.1177/00220345211026918 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Dávila-Sánchez A , Gutierrez MF , Bermudez JP ,et al. Influence of flavonoids on long-term bonding stability on caries-affected dentin[J]. Dent Mater, 2020,36(9):1151-1160. DOI: 10.1016/j.dental.2020.05.007 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Moreira KM , Bertassoni LE , Davies RP ,et al. Impact of biomineralization on resin/biomineralized dentin bond longevity in a minimally invasive approach: an "in vitro"18-month follow-up[J]. Dent Mater, 2021,37(5):e276-e289. DOI: 10.1016/j.dental.2021.01.021 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
de Melo P , Besegato JF , de Abreu Bernardi AC ,et al. Antimicrobial photodynamic therapy as an adjunctive treatment to ultrasound for the dentin caries-like lesion removal[J]. Photodiagnosis Photodyn Ther, 2022,40:103148. DOI: 10.1016/j.pdpdt.2022.103148 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Zhang A , Chen R , Aregawi W ,et al. Development and calibration of biochemical models for testing dental restorations[J]. Acta Biomater, 2020,109:132-141. DOI: 10.1016/j.actbio.2020.04.014 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
Besegato JF , Melo P , Bernardi A ,et al. Ultrasound device as a minimally invasive approach for caries dentin removal[J]. Braz Dent J, 2022,33(1):57-67. DOI: 10.1590/0103-6440202203878 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Barbosa-Martins LF , Sousa JP , Alves LA ,et al. Biomimetic mineralizing agents recover the micro tensile bond strength of demineralized dentin[J]. Materials (Basel), 2018,11(9):1733. DOI: 10.3390/ma11091733 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
de Carvalho FG , de Fucio SB , Sinhoreti MA ,et al. Confocal laser scanning microscopic analysis of the depth of dentin caries-like lesions in primary and permanent teeth[J]. Braz Dent J, 2008,19(2):139-144. DOI: 10.1590/s0103-64402008000200010 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Tang K , Wang F , Dai SQ ,et al. Enhanced bonding to caries-affected dentin using an isocyanate-based primer[J]. J Dent Res, 2023,102(13):1444-1451. DOI: 10.1177/00220345231199416 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Hon L , Mohamed A , Lynch E . Reliability of colour and hardness clinical examinations in detecting dentine caries severity: a systematic review and meta-analysis[J]. Sci Rep, 2019,9(1):6533. DOI: 10.1038/s41598-019-41270-6 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Innes NP , Frencken JE , Bjørndal L ,et al. Managing carious lesions: consensus recommendations on terminology[J]. Adv Dent Res, 2016,28(2):49-57. DOI: 10.1177/0022034516639276 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Abba HM , Idon PI , Udoye CI ,et al. Evaluation of residual carious dentin detection methods after cavity preparation: a randomized clinical trial[J]. BMC Oral Health, 2024,24(1):1452. DOI: 10.1186/s12903-024-05243-0 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
梁景平. 龋病早期诊断新技术的研究与应用[J]. 中华口腔医学杂志, 2021,56(1):33-38. DOI: 10.3760/cma.j.cn112144-20201108-00558 .
返回引文位置Google Scholar
百度学术
万方数据
Liang JP . Research and application of new techniques for early diagnosis of caries[J]. Chin J Stomatol, 2021,56(1):33-38. DOI: 10.3760/cma.j.cn112144-20201108-00558 .
Goto CitationGoogle Scholar
Baidu Scholar
Wanfang Data
[18]
Chitpitak N , Wongwitwichot P , Talungchit S ,et al. Clinical, microbiological, and microcomputed tomography evaluation of silver diamine fluoride in controlling root carious lesions: an in vivo study[J]. J Clin Exp Dent, 2024,16(7):e836-e844. DOI: 10.4317/jced.61178 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Al-Shareefi S , Addie A , Al-Taee L . Biochemical and mechanical analysis of occlusal and proximal carious lesions[J]. Diagnostics (Basel), 2022,12(12):2944. DOI: 10.3390/diagnostics12122944 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Seyedmahmoud R , McGuire JD , Wang Y ,et al. The interrelationship of microstructure and hardness of human coronal dentin using reference point indentation technique and micro-Raman spectroscopy[J]. Dent Mater, 2017,33(10):1069-1074. DOI: 10.1016/j.dental.2017.07.005 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Leiva-Sabadini C , Tiozzo-Lyon P , Hidalgo-Galleguillos L ,et al. Nanoscale dynamics of streptococcal adhesion to AGE-modified collagen[J]. J Dent Res, 2023,102(8):957-964. DOI: 10.1177/00220345231166294 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
He Z , Chen L , Hu X ,et al. Mechanical properties and molecular structure analysis of subsurface dentin after Er:YAG laser irradiation[J]. J Mech Behav Biomed Mater, 2017,74:274-282. DOI: 10.1016/j.jmbbm.2017.05.036 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Oliveira-Reis B , Maluly-Proni AT , Fagundes TC ,et al. Influence of protease inhibitors on the degradation of sound, sclerotic and caries-affected demineralized dentin[J]. J Mech Behav Biomed Mater, 2019,97:1-6. DOI: 10.1016/j.jmbbm.2019.05.003 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Wurm A , Kühn J , Kugel K ,et al. Raman microscopic spectroscopy as a diagnostic tool to detect Staphylococcus epidermidis in bone grafts[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2022,280:121570. DOI: 10.1016/j.saa.2022.121570 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Dhanvijay A , Kubde R , Shenoi P ,et al. Assessment of smear layer formation after caries removal using erbium laser and papain-based chemo-mechanical caries removal agent: an in vitro scanning electron m icroscopy study [J]. Cureus, 2023,15(10):e47999. DOI: 10.7759/cureus.47999 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Foxton RM . Current perspectives on dental adhesion: (2) Concepts for operatively managing carious lesions extending into dentine using bioactive and adhesive direct restorative materials[J]. Jpn Dent Sci Rev, 2020,56(1):208-215. DOI: 10.1016/j.jdsr.2020.08.003 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Neves Ade A , Coutinho E , Cardoso MV ,et al. Micro-tensile bond strength and interfacial characterization of an adhesive bonded to dentin prepared by contemporary caries-excavation techniques[J]. Dent Mater, 2011,27(6):552-562. DOI: 10.1016/j.dental.2011.02.008 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
黄翠,Email: nc.defudabe.uhwiucgnauh,电话:027-87686056
B

梁圣洁:实验设计、研究实施、数据分析、文章撰写;李欣洋:数据分析、文章修改;姚陈敏:选题和设计、文章审阅和修改、获取经费、项目监督和管理;黄翠:指导文章方向、文章审阅和修改、获取经费、项目监督和管理

C
梁圣洁, 李欣洋, 姚陈敏, 等. 兼具脱矿与变色特性的人工龋影响牙本质模型的建立与表征[J]. 中华口腔医学杂志, 2025, 60(4): 355-364. DOI: 10.3760/cma.j.cn112144-20241226-00505.
D
所有作者声明不存在利益冲突
E
国家自然科学基金 (82101056)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号