综述
脑自动调节在危重症领域的研究进展
韦静静
邓双逍
卞兴航
杨思敏
袁慧琴
周保纯
作者及单位信息
·
DOI: 10.3760/cma.j.issn.1671-0282.2025.03.032
21
6
0
0
0
0
PDF下载
APP内阅读
摘要

大脑是一个代谢十分活跃的器官,尽管其重量仅占全身体重的2%,但脑血流量(cerebral blood flow, CBF)却占心输出量的15%,脑耗氧量占全身耗氧量的20% [1],大脑高耗氧量的特点突出了保证脑血流供应的重要性,由此可见脑组织对缺血缺氧的耐受性是极差的,保证充足的脑灌注对于各类颅脑损伤的恢复以及继发性颅脑损伤的防治具有重要意义。

引用本文

韦静静,邓双逍,卞兴航,等. 脑自动调节在危重症领域的研究进展[J]. 中华急诊医学杂志,2025,34(03):455-460.

DOI:10.3760/cma.j.issn.1671-0282.2025.03.032

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
大脑是一个代谢十分活跃的器官,尽管其重量仅占全身体重的2%,但脑血流量(cerebral blood flow, CBF)却占心输出量的15%,脑耗氧量占全身耗氧量的20% [ 1 ],大脑高耗氧量的特点突出了保证脑血流供应的重要性,由此可见脑组织对缺血缺氧的耐受性是极差的,保证充足的脑灌注对于各类颅脑损伤的恢复以及继发性颅脑损伤的防治具有重要意义。
与外周循环不同,CBF的调节机制更加精密和复杂,这些机制包括脑自动调节、血管对血管活性刺激的反应性、神经血管耦合以及内皮依赖性反应 [ 2 ]。重症监护病房中的患者常常存在脑功能异常,脑自主调节功能障碍是神经功能障碍发生的重要原因,本文主要讨论脑自动调节在危重症患者中的研究进展。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Williams LR , Leggett RW . Reference values for resting blood flow to organs of man[J]. Clin Phys Physiol Meas, 1989,10(3):187-217. 10.1088/0143-0815/10/3/001 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Claassen JAHR , Thijssen DHJ , Panerai RB ,et al. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation[J]. Physiol Rev, 2021,101(4):1487-1559. DOI: 10.1152/physrev.00022.2020 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Lassen NA . Cerebral blood flow and oxygen consumption in man[J]. Physiol Rev, 1959,39(2):183-238. DOI: 10.1152/physrev.1959.39.2.183 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Peixoto AJ . Acute severe hypertension[J]. N Engl J Med, 2019,381(19):1843-1852. DOI: 10.1056/nejmcp1901117 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Hawryluk GWJ , Citerio G , Hutchinson P ,et al. Intracranial pressure: current perspectives on physiology and monitoring[J]. Intensive Care Med, 2022,48(10):1471-1481. DOI: 10.1007/s00134-022-06786-y .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Fog M . The relationship between the blood pressure and the tonic regulation of the pial arteries[J]. J Neurol Psychiatry, 1938,1(3):187-197. DOI: 10.1136/jnnp.1.3.187 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Zhang R , Crandall CG , Levine BD . Cerebral hemodynamics during the Valsalva maneuver: insights from ganglionic blockade[J]. Stroke, 2004,35(4):843-847. DOI: 10.1161/01.STR.0000120309.84666.AE .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Rangel-Castilla L , Gasco J , Nauta HJW ,et al. Cerebral pressure autoregulation in traumatic brain injury[J]. Neurosurg Focus, 2008,25(4):E7. DOI: 10.3171/FOC.2008.25.10.E7 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Golding EM , <x>Marrell</x> <x>i</x> SP , You JP ,et al. Endothelium-derived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow?[J]. Stroke, 2002,33(3):661-663.
返回引文位置Google Scholar
百度学术
万方数据
[10]
Panerai RB . Assessment of cerebral pressure autoregulation in humans: a review of measurement methods[J]. Physiol Meas, 1998,19(3):305-338. DOI: 10.1088/0967-3334/19/3/001 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Giller CA . The frequency-dependent behavior of cerebral autoregulation[J]. Neurosurgery, 1990,27(3):362-368. DOI: 10.1097/00006123-199009000-00004 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Czosnyka M , Smielewski P , Kirkpatrick P ,et al. Monitoring of cerebral autoregulation in head-injured patients[J]. Stroke, 1996,27(10):1829-1834. DOI: 10.1161/01.str.27.10.1829 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Moerman AT , Vanbiervliet VM , Van Wesemael A ,et al. Assessment of cerebral autoregulation patterns with near-infrared spectroscopy during pharmacological-induced pressure changes[J]. Anesthesiology, 2015,123(2):327-335. DOI: 10.1097/ALN.0000000000000715 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Czosnyka M , Smielewski P , Kirkpatrick P ,et al. Continuous assessment of the cerebral vasomotor reactivity in head injury[J]. Neurosurgery, 1997,41(1):11-17;discussion 17-19. DOI: 10.1097/00006123-199707000-00005 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Caicedo A , Naulaers G , Lemmers P ,et al. Detection of cerebral autoregulation by near-infrared spectroscopy in neonates: performance analysis of measurement methods[J]. J Biomed Opt, 2012,17(11):117003. DOI: 10.1117/1.JBO.17.11.117003 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Smielewski P , Czosnyka Z , Kasprowicz M ,et al. ICM+: a versatile softwar e for assessment of CSF dynamics [J]. Acta Neurochir Suppl, 2012,114:75-79. DOI: 10.1007/978-3-7091-0956-4_13 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Smielewski P , Lavinio A , Timofeev I ,et al. ICM+, a flexible platform for investigations of cerebrospinal dynamics in clinical practice[J]. Acta Neurochir Suppl, 2008,102:145-151. DOI: 10.1007/978-3-211-85578-2_30 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Perkins GD , Callaway CW , Haywood K ,et al. Brain injury after cardiac arrest[J]. Lancet, 2021,398(10307):1269-1278. DOI: 10.1016/S0140-6736(21)00953-3 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Sundgreen C , Larsen FS , Herzog TM ,et al. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest[J]. Stroke, 2001,32(1):128-132. DOI: 10.1161/01.str.32.1.128 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Pham P , Bindra J , Chuan A ,et al. Are changes in cerebrovascular autoregulation following cardiac arrest associated with neurological outcome? Results of a pilot study[J]. Resuscitation, 2015,96:192-198. DOI: 10.1016/j.resuscitation.2015.08.007 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Kirschen MP , Majmudar T , Diaz-Arrastia R ,et al. Deviations from PRx-derived optimal blood pressure are associated with mortality after cardiac arrest[J]. Resuscitation, 2022,175:81-87. DOI: 10.1016/j.resuscitation.2022.03.003 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Balu R , Rajagopalan S , Baghshomali S ,et al. Cerebrovascular pressure reactivity and intracranial pressure are associated with neurologic outcome after hypoxic-ischemic brain injury[J]. Resuscitation, 2021,164:114-121. DOI: 10.1016/j.resuscitation.2021.04.023 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Laurikkala J , Aneman A , Peng A ,et al. Association of deranged cerebrovascular reactivity with brain injury following cardiac arrest: a post-hoc analysis of the COMACARE trial[J]. Crit Care, 2021,25(1):350. DOI: 10.1186/s13054-021-03764-6 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Hazenberg L , Aries M , Beqiri E ,et al. Are NIRS-derived cerebral autoregulation and ABPopt values different between hemispheres in hypoxic-ischemic brain injury patients following cardiac arrest?[J]. J Clin Monit Comput, 2023,37(5):1427-1430. DOI: 10.1007/s10877-023-01008-2 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Jakkula P , Pettilä V , Skrifvars MB ,et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: a randomised pilot trial[J]. Intensive Care Med, 2018,44(12):2091-2101. DOI: 10.1007/s00134-018-5446-8 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Sekhon MS , Gooderham P , Menon DK ,et al. The burden of brain hypoxia and optimal mean arterial pressure in patients with hypoxic ischemic brain injury after cardiac arrest[J]. Crit Care Med, 2019,47(7):960-969. DOI: 10.1097/CCM.0000000000003745 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Yenari MA , Han HS . Neuroprotective mechanisms of hypothermia in brain ischa emia [J]. Nat Rev Neurosci, 2012,13(4):267-278. DOI: 10.1038/nrn3174 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Lee JK , Yang ZJ , Wang B ,et al. Noninvasive autoregulation monitoring in a swine model of pediatric cardiac arrest[J]. Anesth Analg, 2012,114(4):825-836. DOI: 10.1213/ANE.0b013e31824762d5 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Crippa IA , Vincent JL , Zama Cavicchi F ,et al. Cerebral autoregulation in anoxic brain injury patients treated with targeted temperature management[J]. J Intensive Care, 2021,9(1):67. DOI: 10.1186/s40560-021-00579-z .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Sekhon MS , Smielewski P , Bhate TD ,et al. Using the relationship between brain tissue regional saturation of oxygen and mean arterial pressure to determine the optimal mean arterial pressure in patients following cardiac arrest: a pilot proof-of-concept study[J]. Resuscitation, 2016,106:120-125. DOI: 10.1016/j.resuscitation.2016.05.019 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
Singer M , Deutschman CS , Seymour CW ,et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016,315(8):801-810. DOI: 10.1001/jama.2016.0287 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Bleck TP , Smith MC , Pierre-Louis SJ ,et al. Neurologic complications of critical medical illnesses[J]. Crit Care Med, 1993,21(1):98-103. DOI: 10.1097/00003246-199301000-00019 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Esen F , Orhun G , Özcan PE ,et al. Diagnosing acute brain dysfunction due to sepsis[J]. Neurol Sci, 2020,41(1):25-33. DOI: 10.1007/s10072-019-04069-x .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Crippa IA , Subirà C , Vincent JL ,et al. Impaired cerebral autoregulation is associated with brain dysfunction in patients with sepsis[J]. Crit Care, 2018,22(1):327. DOI: 10.1186/s13054-018-2258-8 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Schramm P , Klein KU , Falkenberg L ,et al. Impaired cerebrovascular autoregulation in patients with severe sepsis and sepsis-associated delirium[J]. Crit Care, 2012,16(5):R181. DOI: 10.1186/cc11665 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Pfister D , Siegemund M , Dell-Kuster S ,et al. Cerebral perfusion in sepsis-associated delirium [J]. Crit Care, 2008,12(3):R63. DOI: 10.1186/cc6891 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Caldas JR , Passos RH , Ramos JGR ,et al. Dynamic autoregulation is impaired in circulatory shock[J]. Shock, 2020,54(2):183-189. DOI: 10.1097/SHK.0000000000001488 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Bowton DL , Bertels NH , Prough DS ,et al. Cerebral blood flow is reduced in patients with sepsis syndrome[J]. Crit Care Med, 1989,17(5):399-403. DOI: 10.1097/00003246-198905000-00004 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Taccone FS , Su FH , De Deyne C ,et al. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis[J]. Crit Care Med, 2014,42(2):e114-22. DOI: 10.1097/CCM.0b013e3182a641b8 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Rivera-Lara L . The role of impaired brain perfusion in septic encephalopathy[J]. Crit Care, 2019,23(1):54. DOI: 10.1186/s13054-018-2299-z .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Joshi B , Ono M , Brown C ,et al. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass[J]. Anesth Analg, 2012,114(3):503-510. DOI: 10.1213/ANE.0b013e31823d292a .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Asfar P , Meziani F , Hamel JF ,et al. High versus low blood-pressure target in patients with septic shock[J]. N Engl J Med, 2014,370(17):1583-1593. DOI: 10.1056/NEJMoa1312173 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Czosnyka M , Smielewski P , Piechnik S ,et al. Cerebral autoregulation following head injury[J]. J Neurosurg,95(5):756-763. DOI: 10.3171/jns.2001.95.5.0756 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Zeiler FA , Ercole A , Cabeleira M ,et al. Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study[J]. Acta Neurochir (Wien), 2019,161(6):1217-1227. DOI: 10.1007/s00701-019-03844-1 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Zeiler FA , Ercole A , Beqiri E ,et al. Association between cerebrovascular reactivity monitoring and mortality is preserved when adjusting for baseline admission characteristics in adult traumatic brain injury: a CENTER-TBI study[J]. J Neurotrauma, 2020,37(10):1233-1241. DOI: 10.1089/neu.2019.6808 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Zeiler FA , Donnelly J , Smielewski P ,et al. Critical thresholds of intracranial pressure-derived continuous cerebrovascular reactivity indices for outcome prediction in noncraniectomized patients with traumatic brain injury[J]. J Neurotrauma, 2018,35(10):1107-1115. DOI: 10.1089/neu.2017.5472 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Sorrentino E , Diedler J , Kasprowicz M ,et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury[J]. Neurocrit Care, 2012,16(2):258-266. DOI: 10.1007/s12028-011-9630-8 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Beqiri E , Smielewski P , Guérin C ,et al. Neurological and respiratory effects of lung protective ventilation in acute brain injury patients without lung injury: brain vent, a single centre randomized interventional study[J]. Crit Care, 2023,27(1):115. DOI: 10.1186/s13054-023-04383-z .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Ciliberti P , Cardim D , Giardina A ,et al. Effects of short-term hyperoxemia on cerebral autoregulation and tissue oxygenation in acute brain injured patients[J]. Front Physiol, 2023,14:1113386. DOI: 10.3389/fphys.2023.1113386 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Dias C , Silva MJ , Pereira E ,et al. Post-traumatic multimodal brain monitoring: response to hypertonic saline[J]. J Neurotrauma, 2014,31(22):1872-1880. DOI: 10.1089/neu.2014.3376 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Zipfel J , Engel J , Hockel K ,et al. Effects of hypertonic saline on intracranial pressure and cerebral autoregulation in pediatric traumatic brain injury[J]. J Neurosurg Pediatr, 2021,28(6):631-637. DOI: 10.3171/2021.6.PEDS21143 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Zeiler FA , Ercole A , Cabeleira M ,et al. Descriptive analysis of low versus elevated intracranial pressure on cerebral physiology in adult traumatic brain injury: a CENTER-TBI exploratory study[J]. Acta Neurochir (Wien), 2020,162(11):2695-2706. DOI: 10.1007/s00701-020-04485-5 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Campbell BCV , De Silva DA , Macleod MR ,et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019,5(1):70. DOI: 10.1038/s41572-019-0118-8 .
返回引文位置Google Scholar
百度学术
万方数据
[54]
Petersen NH , Silverman A , Strander SM ,et al. Fixed compared with autoregulation-oriented blood pressure thresholds after mechanical thrombectomy for ischemic stroke [J]. Stroke, 2020,51(3):914-921. DOI: 10.1161/STROKEAHA.119.026596 .
返回引文位置Google Scholar
百度学术
万方数据
[55]
Gupta A , Levi Chazen J , Hartman M ,et al. Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: a systematic review and meta-analysis[J]. Stroke, 2012,43(11):2884-2891. DOI: 10.1161/STROKEAHA.112.663716 .
返回引文位置Google Scholar
百度学术
万方数据
[56]
Tian G , Ji Z , Lin ZZ ,et al. Cerebral autoregulation is heterogeneous in different stroke mechanism of ischemic stroke caused by intracranial atherosclerotic stenosis[J]. Brain Behav, 2021,11(1):e01907. DOI: 10.1002/brb3.1907 .
返回引文位置Google Scholar
百度学术
万方数据
[57]
Ma HY , Liu J , Lv S ,et al. Dynamic cerebral autoregulation in embolic stroke of undetermined source[J]. Front Physiol, 2020,11:557408. DOI: 10.3389/fphys.2020.557408 .
返回引文位置Google Scholar
百度学术
万方数据
[58]
Tian G , Ji Z , Huang KB ,et al. Dynamic cerebral autoregulation is an independent outcome predictor of acute ischemic stroke after endovascular therapy[J]. BMC Neurol, 2020,20(1):189. DOI: 10.1186/s12883-020-01737-w .
返回引文位置Google Scholar
百度学术
万方数据
[59]
Guo ZN , Qu Y , Shen ZD ,et al. Cerebral autoregulation: a reliable predictor of prognosis in patients receiving intravenous thrombolysis[J]. CNS Neurosci Ther, 2024,30(5):e14748. DOI: 10.1111/cns.14748 .
返回引文位置Google Scholar
百度学术
万方数据
[60]
Kirschen MP , Majmudar T , Beaulieu F ,et al. Deviations from NIRS-derived optimal blood pressure are associated with worse outcomes after pediatric cardiac arrest[J]. Resuscitation, 2021,168:110-118. DOI: 10.1016/j.resuscitation.2021.09.023 .
返回引文位置Google Scholar
百度学术
万方数据
[61]
Riemann L , Beqiri E , Smielewski P ,et al. Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: a CENTER-TBI study[J]. Crit Care, 2020,24(1):266. DOI: 10.1186/s13054-020-02974-8 .
返回引文位置Google Scholar
百度学术
万方数据
[62]
Petkus V , Preiksaitis A , Chaleckas E ,et al. Optimal cerebral perfusion pressure: targeted treatment for severe traumatic brain injury[J]. J Neurotrauma, 2020,37(2):389-396. DOI: 10.1089/neu.2019.6551 .
返回引文位置Google Scholar
百度学术
万方数据
[63]
Dias C , Silva MJ , Pereira E ,et al. Optimal cerebral perfusion pressure management at bedside: a single-center pilot study[J]. Neurocrit Care, 2015,23(1):92-102. DOI: 10.1007/s12028-014-0103-8 .
返回引文位置Google Scholar
百度学术
万方数据
[64]
Rosenblatt K , Walker KA , Goodson C ,et al. Cerebral autoregulation-guided optimal blood pressure in sepsis-associated encephalopathy: a case series[J]. J Intensive Care Med, 2020,35(12):1453-1464. DOI: 10.1177/0885066619828293 .
返回引文位置Google Scholar
百度学术
万方数据
[65]
Khan JM , Shore A , Lee KFH ,et al. Cerebral autoregulation-based mean arterial pressure targets and delirium in critically ill adults without brain injury: a retrospective cohort study [J]. Can J Anaesth, 2024,71(1):107-117. DOI: 10.1007/s12630-023-02609-w .
返回引文位置Google Scholar
百度学术
万方数据
[66]
Le Roux P , Menon DK , Citerio G ,et al. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: a statement for healthcare professionals from the neurocritical care society and the European society of intensive care medicine[J]. Neurocrit Care, 2014,21(Suppl 2):S1-26. DOI: 10.1007/s12028-014-0041-5 .
返回引文位置Google Scholar
百度学术
万方数据
[67]
Tas J , Beqiri E , van Kaam RC ,et al. Targeting autoregulat ion-guided cerebral perfusion pressure after traumatic brain injury (COGiTATE): a feasibility randomized controlled clinical trial [J]. J Neurotrauma, 2021,38(20):2790-2800. DOI: 10.1089/neu.2021.0197 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
周保纯,Email: mocdef.9ab3167cbz
B
所有作者声明无利益冲突
C
苏州市"科教强卫"项目 (MSXM2024008)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号