首页 中华急诊医学杂志 2025年34卷03期 脑自动调节在危重症领域的研究进展
中华急诊医学杂志
期刊首页
过刊列表
高级检索
稿件发表
• 综述 •
脑自动调节在危重症领域的研究进展
作者及单位信息
·
DOI: 10.3760/cma.j.issn.1671-0282.2025.03.032
21
6
0
0
0
0
扫描转手机阅读
下载中华医学期刊APP阅读更流畅 体验更丰富
PDF下载
APP内阅读
摘要
大脑是一个代谢十分活跃的器官,尽管其重量仅占全身体重的2%,但脑血流量(cerebral blood flow, CBF)却占心输出量的15%,脑耗氧量占全身耗氧量的20% [1],大脑高耗氧量的特点突出了保证脑血流供应的重要性,由此可见脑组织对缺血缺氧的耐受性是极差的,保证充足的脑灌注对于各类颅脑损伤的恢复以及继发性颅脑损伤的防治具有重要意义。
引用本文
韦静静,邓双逍,卞兴航,等. 脑自动调节在危重症领域的研究进展[J]. 中华急诊医学杂志,2025,34(03):455-460.
DOI:10.3760/cma.j.issn.1671-0282.2025.03.032PERMISSIONS
Request permissions for this article from CCC.
评价本文
*以上评分为匿名评价
本文评分
0分
[累计0个]
向我们报错
版权归中华医学会所有。
未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
除非特别声明,本刊刊出的所有文章不代表中华医学会和本刊编委会的观点。
大脑是一个代谢十分活跃的器官,尽管其重量仅占全身体重的2%,但脑血流量(cerebral blood flow, CBF)却占心输出量的15%,脑耗氧量占全身耗氧量的20%
[
1
],大脑高耗氧量的特点突出了保证脑血流供应的重要性,由此可见脑组织对缺血缺氧的耐受性是极差的,保证充足的脑灌注对于各类颅脑损伤的恢复以及继发性颅脑损伤的防治具有重要意义。
与外周循环不同,CBF的调节机制更加精密和复杂,这些机制包括脑自动调节、血管对血管活性刺激的反应性、神经血管耦合以及内皮依赖性反应
[
2
]。重症监护病房中的患者常常存在脑功能异常,脑自主调节功能障碍是神经功能障碍发生的重要原因,本文主要讨论脑自动调节在危重症患者中的研究进展。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
已是订阅账户?
登录
参考文献
[1]
Williams LR , Leggett RW . Reference values for resting blood flow to organs of man[J]. Clin Phys Physiol Meas, 1989,10(3):187-217.
10.1088/0143-0815/10/3/001
.
[2]
Claassen JAHR , Thijssen DHJ , Panerai RB ,et al. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation[J]. Physiol Rev, 2021,101(4):1487-1559. DOI:
10.1152/physrev.00022.2020
.
[3]
Lassen NA . Cerebral blood flow and oxygen consumption in man[J]. Physiol Rev, 1959,39(2):183-238. DOI:
10.1152/physrev.1959.39.2.183
.
[4]
Peixoto AJ . Acute severe hypertension[J]. N Engl J Med, 2019,381(19):1843-1852. DOI:
10.1056/nejmcp1901117
.
[5]
Hawryluk GWJ , Citerio G , Hutchinson P ,et al. Intracranial pressure: current perspectives on physiology and monitoring[J]. Intensive Care Med, 2022,48(10):1471-1481. DOI:
10.1007/s00134-022-06786-y
.
[6]
Fog M . The relationship between the blood pressure and the tonic regulation of the pial arteries[J]. J Neurol Psychiatry, 1938,1(3):187-197. DOI:
10.1136/jnnp.1.3.187
.
[7]
Zhang R , Crandall CG , Levine BD . Cerebral hemodynamics during the Valsalva maneuver: insights from ganglionic blockade[J]. Stroke, 2004,35(4):843-847. DOI:
10.1161/01.STR.0000120309.84666.AE
.
[8]
Rangel-Castilla L , Gasco J , Nauta HJW ,et al. Cerebral pressure autoregulation in traumatic brain injury[J]. Neurosurg Focus, 2008,25(4):E7. DOI:
10.3171/FOC.2008.25.10.E7
.
[9]
Golding EM ,
<x>Marrell</x>
<x>i</x>
SP , You JP ,et al. Endothelium-derived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow?[J]. Stroke, 2002,33(3):661-663.
[10]
Panerai RB . Assessment of cerebral pressure autoregulation in humans: a review of measurement methods[J]. Physiol Meas, 1998,19(3):305-338. DOI:
10.1088/0967-3334/19/3/001
.
[11]
Giller CA . The frequency-dependent behavior of cerebral autoregulation[J]. Neurosurgery, 1990,27(3):362-368. DOI:
10.1097/00006123-199009000-00004
.
[12]
Czosnyka M , Smielewski P , Kirkpatrick P ,et al. Monitoring of cerebral autoregulation in head-injured patients[J]. Stroke, 1996,27(10):1829-1834. DOI:
10.1161/01.str.27.10.1829
.
[13]
Moerman AT , Vanbiervliet VM , Van Wesemael A ,et al. Assessment of cerebral autoregulation patterns with near-infrared spectroscopy during pharmacological-induced pressure changes[J]. Anesthesiology, 2015,123(2):327-335. DOI:
10.1097/ALN.0000000000000715
.
[14]
Czosnyka M , Smielewski P , Kirkpatrick P ,et al. Continuous assessment of the cerebral vasomotor reactivity in head injury[J]. Neurosurgery, 1997,41(1):11-17;discussion 17-19. DOI:
10.1097/00006123-199707000-00005
.
[15]
Caicedo A , Naulaers G , Lemmers P ,et al. Detection of cerebral autoregulation by near-infrared spectroscopy in neonates: performance analysis of measurement methods[J]. J Biomed Opt, 2012,17(11):117003. DOI:
10.1117/1.JBO.17.11.117003
.
[16]
Smielewski P , Czosnyka Z , Kasprowicz M ,et al.
ICM+: a versatile softwar
e for assessment of CSF dynamics
[J]. Acta Neurochir Suppl, 2012,114:75-79. DOI:
10.1007/978-3-7091-0956-4_13
.
[17]
Smielewski P , Lavinio A , Timofeev I ,et al. ICM+, a flexible platform for investigations of cerebrospinal dynamics in clinical practice[J]. Acta Neurochir Suppl, 2008,102:145-151. DOI:
10.1007/978-3-211-85578-2_30
.
[18]
Perkins GD , Callaway CW , Haywood K ,et al. Brain injury after cardiac arrest[J]. Lancet, 2021,398(10307):1269-1278. DOI:
10.1016/S0140-6736(21)00953-3
.
[19]
Sundgreen C , Larsen FS , Herzog TM ,et al. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest[J]. Stroke, 2001,32(1):128-132. DOI:
10.1161/01.str.32.1.128
.
[20]
Pham P , Bindra J , Chuan A ,et al. Are changes in cerebrovascular autoregulation following cardiac arrest associated with neurological outcome? Results of a pilot study[J]. Resuscitation, 2015,96:192-198. DOI:
10.1016/j.resuscitation.2015.08.007
.
[21]
Kirschen MP , Majmudar T , Diaz-Arrastia R ,et al. Deviations from PRx-derived optimal blood pressure are associated with mortality after cardiac arrest[J]. Resuscitation, 2022,175:81-87. DOI:
10.1016/j.resuscitation.2022.03.003
.
[22]
Balu R , Rajagopalan S , Baghshomali S ,et al. Cerebrovascular pressure reactivity and intracranial pressure are associated with neurologic outcome after hypoxic-ischemic brain injury[J]. Resuscitation, 2021,164:114-121. DOI:
10.1016/j.resuscitation.2021.04.023
.
[23]
Laurikkala J , Aneman A , Peng A ,et al. Association of deranged cerebrovascular reactivity with brain injury following cardiac arrest: a post-hoc analysis of the COMACARE trial[J]. Crit Care, 2021,25(1):350. DOI:
10.1186/s13054-021-03764-6
.
[24]
Hazenberg L , Aries M , Beqiri E ,et al. Are NIRS-derived cerebral autoregulation and ABPopt values different between hemispheres in hypoxic-ischemic brain injury patients following cardiac arrest?[J]. J Clin Monit Comput, 2023,37(5):1427-1430. DOI:
10.1007/s10877-023-01008-2
.
[25]
Jakkula P , Pettilä V , Skrifvars MB ,et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: a randomised pilot trial[J]. Intensive Care Med, 2018,44(12):2091-2101. DOI:
10.1007/s00134-018-5446-8
.
[26]
Sekhon MS , Gooderham P , Menon DK ,et al. The burden of brain hypoxia and optimal mean arterial pressure in patients with hypoxic ischemic brain injury after cardiac arrest[J]. Crit Care Med, 2019,47(7):960-969. DOI:
10.1097/CCM.0000000000003745
.
[27]
Yenari MA , Han HS .
Neuroprotective mechanisms of hypothermia in brain ischa
emia
[J]. Nat Rev Neurosci, 2012,13(4):267-278. DOI:
10.1038/nrn3174
.
[28]
Lee JK , Yang ZJ , Wang B ,et al. Noninvasive autoregulation monitoring in a swine model of pediatric cardiac arrest[J]. Anesth Analg, 2012,114(4):825-836. DOI:
10.1213/ANE.0b013e31824762d5
.
[29]
Crippa IA , Vincent JL , Zama Cavicchi F ,et al. Cerebral autoregulation in anoxic brain injury patients treated with targeted temperature management[J]. J Intensive Care, 2021,9(1):67. DOI:
10.1186/s40560-021-00579-z
.
[30]
Sekhon MS , Smielewski P , Bhate TD ,et al. Using the relationship between brain tissue regional saturation of oxygen and mean arterial pressure to determine the optimal mean arterial pressure in patients following cardiac arrest: a pilot proof-of-concept study[J]. Resuscitation, 2016,106:120-125. DOI:
10.1016/j.resuscitation.2016.05.019
.
[31]
Singer M , Deutschman CS , Seymour CW ,et al. The third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016,315(8):801-810. DOI:
10.1001/jama.2016.0287
.
[32]
Bleck TP , Smith MC , Pierre-Louis SJ ,et al. Neurologic complications of critical medical illnesses[J]. Crit Care Med, 1993,21(1):98-103. DOI:
10.1097/00003246-199301000-00019
.
[33]
Esen F , Orhun G , Özcan PE ,et al. Diagnosing acute brain dysfunction due to sepsis[J]. Neurol Sci, 2020,41(1):25-33. DOI:
10.1007/s10072-019-04069-x
.
[34]
Crippa IA , Subirà C , Vincent JL ,et al. Impaired cerebral autoregulation is associated with brain dysfunction in patients with sepsis[J]. Crit Care, 2018,22(1):327. DOI:
10.1186/s13054-018-2258-8
.
[35]
Schramm P , Klein KU , Falkenberg L ,et al. Impaired cerebrovascular autoregulation in patients with severe sepsis and sepsis-associated delirium[J]. Crit Care, 2012,16(5):R181. DOI:
10.1186/cc11665
.
[36]
Pfister D , Siegemund M , Dell-Kuster S ,et al.
Cerebral perfusion in
sepsis-associated delirium
[J]. Crit Care, 2008,12(3):R63. DOI:
10.1186/cc6891
.
[37]
Caldas JR , Passos RH , Ramos JGR ,et al. Dynamic autoregulation is impaired in circulatory shock[J]. Shock, 2020,54(2):183-189. DOI:
10.1097/SHK.0000000000001488
.
[38]
Bowton DL , Bertels NH , Prough DS ,et al. Cerebral blood flow is reduced in patients with sepsis syndrome[J]. Crit Care Med, 1989,17(5):399-403. DOI:
10.1097/00003246-198905000-00004
.
[39]
Taccone FS , Su FH , De Deyne C ,et al. Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis[J]. Crit Care Med, 2014,42(2):e114-22. DOI:
10.1097/CCM.0b013e3182a641b8
.
[40]
Rivera-Lara L . The role of impaired brain perfusion in septic encephalopathy[J]. Crit Care, 2019,23(1):54. DOI:
10.1186/s13054-018-2299-z
.
[41]
Joshi B , Ono M , Brown C ,et al. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass[J]. Anesth Analg, 2012,114(3):503-510. DOI:
10.1213/ANE.0b013e31823d292a
.
[42]
Asfar P , Meziani F , Hamel JF ,et al. High versus low blood-pressure target in patients with septic shock[J]. N Engl J Med, 2014,370(17):1583-1593. DOI:
10.1056/NEJMoa1312173
.
[43]
Czosnyka M , Smielewski P , Piechnik S ,et al. Cerebral autoregulation following head injury[J]. J Neurosurg,95(5):756-763. DOI:
10.3171/jns.2001.95.5.0756
.
[44]
Zeiler FA , Ercole A , Cabeleira M ,et al. Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study[J]. Acta Neurochir (Wien), 2019,161(6):1217-1227. DOI:
10.1007/s00701-019-03844-1
.
[45]
Zeiler FA , Ercole A , Beqiri E ,et al. Association between cerebrovascular reactivity monitoring and mortality is preserved when adjusting for baseline admission characteristics in adult traumatic brain injury: a CENTER-TBI study[J]. J Neurotrauma, 2020,37(10):1233-1241. DOI:
10.1089/neu.2019.6808
.
[46]
Zeiler FA , Donnelly J , Smielewski P ,et al. Critical thresholds of intracranial pressure-derived continuous cerebrovascular reactivity indices for outcome prediction in noncraniectomized patients with traumatic brain injury[J]. J Neurotrauma, 2018,35(10):1107-1115. DOI:
10.1089/neu.2017.5472
.
[47]
Sorrentino E , Diedler J , Kasprowicz M ,et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury[J]. Neurocrit Care, 2012,16(2):258-266. DOI:
10.1007/s12028-011-9630-8
.
[48]
Beqiri E , Smielewski P , Guérin C ,et al. Neurological and respiratory effects of lung protective ventilation in acute brain injury patients without lung injury: brain vent, a single centre randomized interventional study[J]. Crit Care, 2023,27(1):115. DOI:
10.1186/s13054-023-04383-z
.
[49]
Ciliberti P , Cardim D , Giardina A ,et al. Effects of short-term hyperoxemia on cerebral autoregulation and tissue oxygenation in acute brain injured patients[J]. Front Physiol, 2023,14:1113386. DOI:
10.3389/fphys.2023.1113386
.
[50]
Dias C , Silva MJ , Pereira E ,et al. Post-traumatic multimodal brain monitoring: response to hypertonic saline[J]. J Neurotrauma, 2014,31(22):1872-1880. DOI:
10.1089/neu.2014.3376
.
[51]
Zipfel J , Engel J , Hockel K ,et al. Effects of hypertonic saline on intracranial pressure and cerebral autoregulation in pediatric traumatic brain injury[J]. J Neurosurg Pediatr, 2021,28(6):631-637. DOI:
10.3171/2021.6.PEDS21143
.
[52]
Zeiler FA , Ercole A , Cabeleira M ,et al. Descriptive analysis of low versus elevated intracranial pressure on cerebral physiology in adult traumatic brain injury: a CENTER-TBI exploratory study[J]. Acta Neurochir (Wien), 2020,162(11):2695-2706. DOI:
10.1007/s00701-020-04485-5
.
[53]
Campbell BCV , De Silva DA , Macleod MR ,et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019,5(1):70. DOI:
10.1038/s41572-019-0118-8
.
[54]
Petersen NH , Silverman A , Strander SM ,et al.
Fixed
compared with autoregulation-oriented blood pressure thresholds after mechanical thrombectomy for ischemic stroke
[J]. Stroke, 2020,51(3):914-921. DOI:
10.1161/STROKEAHA.119.026596
.
[55]
Gupta A , Levi Chazen J , Hartman M ,et al. Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: a systematic review and meta-analysis[J]. Stroke, 2012,43(11):2884-2891. DOI:
10.1161/STROKEAHA.112.663716
.
[56]
Tian G , Ji Z , Lin ZZ ,et al. Cerebral autoregulation is heterogeneous in different stroke mechanism of ischemic stroke caused by intracranial atherosclerotic stenosis[J]. Brain Behav, 2021,11(1):e01907. DOI:
10.1002/brb3.1907
.
[57]
Ma HY , Liu J , Lv S ,et al. Dynamic cerebral autoregulation in embolic stroke of undetermined source[J]. Front Physiol, 2020,11:557408. DOI:
10.3389/fphys.2020.557408
.
[58]
Tian G , Ji Z , Huang KB ,et al. Dynamic cerebral autoregulation is an independent outcome predictor of acute ischemic stroke after endovascular therapy[J]. BMC Neurol, 2020,20(1):189. DOI:
10.1186/s12883-020-01737-w
.
[59]
Guo ZN , Qu Y , Shen ZD ,et al. Cerebral autoregulation: a reliable predictor of prognosis in patients receiving intravenous thrombolysis[J]. CNS Neurosci Ther, 2024,30(5):e14748. DOI:
10.1111/cns.14748
.
[60]
Kirschen MP , Majmudar T , Beaulieu F ,et al. Deviations from NIRS-derived optimal blood pressure are associated with worse outcomes after pediatric cardiac arrest[J]. Resuscitation, 2021,168:110-118. DOI:
10.1016/j.resuscitation.2021.09.023
.
[61]
Riemann L , Beqiri E , Smielewski P ,et al. Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: a CENTER-TBI study[J]. Crit Care, 2020,24(1):266. DOI:
10.1186/s13054-020-02974-8
.
[62]
Petkus V , Preiksaitis A , Chaleckas E ,et al. Optimal cerebral perfusion pressure: targeted treatment for severe traumatic brain injury[J]. J Neurotrauma, 2020,37(2):389-396. DOI:
10.1089/neu.2019.6551
.
[63]
Dias C , Silva MJ , Pereira E ,et al. Optimal cerebral perfusion pressure management at bedside: a single-center pilot study[J]. Neurocrit Care, 2015,23(1):92-102. DOI:
10.1007/s12028-014-0103-8
.
[64]
Rosenblatt K , Walker KA , Goodson C ,et al. Cerebral autoregulation-guided optimal blood pressure in sepsis-associated encephalopathy: a case series[J]. J Intensive Care Med, 2020,35(12):1453-1464. DOI:
10.1177/0885066619828293
.
[65]
Khan JM , Shore A , Lee KFH ,et al.
Cerebral autoregulation-based mean arterial pressure targets
and delirium in critically ill adults without brain injury: a retrospective cohort study
[J]. Can J Anaesth, 2024,71(1):107-117. DOI:
10.1007/s12630-023-02609-w
.
[66]
Le Roux P , Menon DK , Citerio G ,et al. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: a statement for healthcare professionals from the neurocritical care society and the European society of intensive care medicine[J]. Neurocrit Care, 2014,21(Suppl 2):S1-26. DOI:
10.1007/s12028-014-0041-5
.
[67]
Tas J , Beqiri E , van Kaam RC ,et al.
Targeting autoregulat
ion-guided cerebral perfusion pressure after traumatic brain injury (COGiTATE): a feasibility randomized controlled clinical trial
[J]. J Neurotrauma, 2021,38(20):2790-2800. DOI:
10.1089/neu.2021.0197
.
备注信息
评论 (0条)
注册 登录
时间排序
- 时间排序
暂无评论,发表第一条评论抢沙发
最新推荐
更多
急危重症领域超声专科护士培养的研究进展
乔婷婷 等 中华现代护理杂志 2024,30(30)
2021年糖尿病领域年度重大进展回顾
郭立新 中华糖尿病杂志 2022,14(01)
老年急危重症- 急诊医学一个新的重要领域
温伟 等 中华急诊医学杂志 2021,30(04)
血氨检测在急危重症领域应用的研究进展
马林沁 等 中华急诊医学杂志 2018,27(10)
分享
详细信息
表
访问与引文
阅读权限
参考文献
访问与引用
访问数据
0
0
全部时间 最近30天 最近6个月 最近12个月
MedAI助手(体验版)
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照
文献快照
N/A
N/A
AI总结中

N/A
N/A
快照内容由人工智能生成,供您参考。

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。
0/50
很抱歉,当前对话已达到其限制。
使用"新建对话"按钮开启更多对话。
停止回答
0/2000
信息反馈
中文(简体)
英文
翻译
机器翻译功能由科大讯飞提供技术支持
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。

你好! 今天我能为您提供什么帮助?
0/30
of
很抱歉,当前对话已达到其限制。
使用"新建对话"按钮开启更多对话。
停止回答
扩写 缩写 改写 翻译
0/2000
信息反馈
历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号
小中大
翻译
润色
扩写
缩写
复制
引用