专家论坛
ENGLISH ABSTRACT
未来10年骨科疾病诊疗的挑战与机遇
张元维
陈晓
苏佳灿
作者及单位信息
·
DOI: 10.3760/cma.j.cn501098-20250109-00023
Challenges and opportunities in the diagnosis and treatment of orthopedic diseases in the next decade
Zhang Yuanwei
Chen Xiao
Su Jiacan
Authors Info & Affiliations
Zhang Yuanwei
Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
Chen Xiao
Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
Su Jiacan
Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
·
DOI: 10.3760/cma.j.cn501098-20250109-00023
9
4
0
0
0
0
PDF下载
APP内阅读
摘要

骨科疾病是全球范围内常见的健康问题,发病率逐年上升,给社会和医疗系统带来巨大负担,其诊疗也面临前所未有的挑战。笔者综合国内外前沿文献,结合自身临床工作经验与研究经历,归纳出未来10年骨科疾病诊疗领域面临的6大国际性挑战,包括骨坏死、骨感染、软骨损伤、难愈性创面、脊髓损伤和遗传发育性骨病。此类疾病普遍具有高发病率、病因复杂不明、危害严重和治疗手段有限等特点,在临床诊疗和基础研究方面迫切需要取得突破性进展。近年来,类器官、人工智能、脑机接口、基因编辑和干细胞疗法等新技术的相继涌现和转化应用,正深刻改变着传统骨科疾病诊疗模式与研究。为深入理解和把握骨科疾病诊疗研究面临的挑战与机遇,进而推动该领域的革新与发展,笔者从骨科疾病诊疗研究难点与痛点、潜在机遇与对策等方面进行阐述,为相关领域临床和科研工作者提供参考和启发,助力攻克6大国际性挑战。

骨坏死;脊髓损伤;类器官;人工智能
ABSTRACT

Orthopedic diseases are a prevalent global health issue, with an increasing incidence year by year, imposing a significant burden on the society and the healthcare system. Research into their diagnosis and treatment faces unprecedented challenges. Based on a comprehensive review of cutting-edge literature from both domestic and international sources, as well as our own clinical and research experience, the authors identified six major international challenges in the diagnosis and treatment of orthopedic diseases over the next decade including osteonecrosis, bone infection, cartilage injury, refractory wound, spinal cord injury, and genetic developmental bone diseases. These diseases are generally characterized by high incidence rate, complex and unknown etiology, serious damage and limited treatment options. There is an urgent need for breakthroughs in both clinical diagnosis and treatment, as well as in basic research. In recent years, the emergence and transformation of new technologies such as organoid, artificial intelligence, brain computer interface, gene editing, and stem cell therapy are profoundly transforming the traditional approaches to the diagnosis, treatment and research of orthopedic diseases. To gain a deeper understanding and grasp of the challenges and opportunities in this field and to promote innovation and development, the authors elaborated on the difficulties, pain points as well as potential opportunities and countermeasures in the researches on the diagnosis and treatment of orthopedic diseases, aiming to provide references and inspirations for clinical and scientific researchers in related fields and contribute to solutions of the six major international challenges.

Osteonecrosis;Spinal cord injuries;Organoids;Artificial intelligence
Su Jiacan, Email: mocdef.3ab61nacaijusrd
引用本文

张元维,陈晓,苏佳灿. 未来10年骨科疾病诊疗的挑战与机遇[J]. 中华创伤杂志,2025,41(03):231-236.

DOI:10.3760/cma.j.cn501098-20250109-00023

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
骨科疾病是全球范围内常见健康问题,涵盖从骨折、软骨损伤等急性损伤性疾病到骨质疏松、骨关节炎等慢性退行性疾病,易引发四肢关节疼痛和肢体功能障碍,甚至导致截瘫和死亡等严重临床结局 1 , 2。随着人口老龄化进程加剧、交通工具快速发展和生活方式改变,骨科疾病发病率逐年上升,给社会和医疗系统带来巨大负担,其诊疗研究也面临前所未有的挑战 3。这些挑战不仅来自于骨科疾病的复杂性和多样性,还来自于现有诊疗研究技术的局限性 4。笔者综合国内外前沿文献,结合自身临床工作经验与研究经历,归纳出未来10年骨科疾病诊疗领域面临的六大国际性挑战,包括骨坏死、骨感染、软骨损伤、难愈性创面、脊髓损伤和遗传发育性骨病。此类疾病普遍具有高发病率、病因复杂不明、危害严重和治疗手段有限等特点,在临床诊疗和基础研究方面迫切需要取得突破性进展。
尽管当前骨科疾病诊疗研究面临诸多挑战,但也孕育着无限机遇。新世纪以来,科技革命浪潮席卷全球,为医疗技术和科学研究革新注入强大动力。在骨科疾病诊疗研究领域,类器官、人工智能、脑机接口、基因编辑和干细胞疗法等新技术的相继涌现和转化应用,正深刻改变着传统骨科疾病诊疗模式和研究 5 , 6 , 7 , 8。为深入理解和把握骨科疾病诊疗研究面临的挑战与机遇,进而推动该领域的革新与发展,笔者从骨科疾病诊疗研究难点与痛点、潜在机遇与对策等方面进行阐述,以期为相关领域临床和科研工作者提供一定参考和启发,助力破解6大国际性挑战。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Händel MN , Cardoso I , von Bülow C ,et al. Fracture risk reduction and safety by osteoporosis treatment compared with placebo or active comparator in postmenopausal women: systematic review, network meta-analysis, and meta-regression analysis of randomised clinical trials[J]. BMJ, 2023,381:e068033. DOI: 10.1136/bmj-2021-068033 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Tran T , Bliuc D , Abrahamsen B ,et al. Multimorbidity clusters potentially superior to individual diseases for stratifying fracture risk in older people: a nationwide cohort study[J]. Age Ageing, 2024,53(7):afae164. DOI: 10.1093/ageing/afae164 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Morin SN , Feldman S , Funnell L ,et al. Clinical practice guideline for management of osteoporosis and fracture prevention in Canada: 2023 update[J]. CMAJ, 2023,195(39):E1333-E1348. DOI: 10.1503/cmaj.221647 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
王光超,苏佳灿. 骨质疏松性椎体压缩骨折诊疗难点及思考[J]. 中国骨伤, 2024,37(6):535-537. DOI: 10.12200/j.issn.1003-0034.20240580 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Bai L , Wu Y , Li G ,et al. AI-enabled organoids: Construction, analysis, and application[J]. Bioact Mater, 2023,31:525-548. DOI: 10.1016/j.bioactmat.2023.09.005 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Frangoul H , Altshuler D , Cappellini MD ,et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia[J]. N Engl J Med, 2021,384(3):252-260. DOI: 10.1056/NEJMoa2031054 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
王健,白龙,陈晓,. 骨类器官的构建、评价与应用专家共识(2024版)[J]. 中华创伤杂志, 2024,40(11):974-986. DOI: 10.3760/cma.j.cn501098-20240826-00525 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
何崇儒,陈晓,王光超,. 脑机接口赋能运动损伤康复[J]. 中华创伤杂志, 2024,40(9):781-786. DOI: 10.3760/cma.j.cn501098-20240517-00343 .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Lou P , Zhou G , Wei B ,et al. Bone grafting for femoral head necrosis in the past decade: a systematic review and network meta- analysis[J]. Int J Surg, 2023,109(3):412-418. DOI: 10.1097/JS9.0000000000000231 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
庄至坤,李子祺,黄昌瑜,. 创伤性股骨头坏死MRI分型的制订及其与股骨头塌陷的相关性研究[J]. 中华骨科杂志, 2024,44(13):881-888. DOI: 10.3760/cma.j.cn121113-20231110-00301 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
贺万雄,王国强,王建忠,. 不同间质干细胞来源外泌体在激素性股骨头坏死进展及治疗中的作用[J]. 中华骨科杂志, 2022,42(20):1391-1398. DOI: 10.3760/cma.j.cn121113-20220416-00195 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Zhou X , Weng W , Chen B ,et al. Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects[J]. J Mater Chem B, 2018,6(5):740-752. DOI: 10.1039/c7tb01246b .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Depypere M , Morgenstern M , Kuehl R ,et al. Pathogenesis and management of fracture-related infection[J]. Clin Microbiol Infect, 2020,26(5):572-578. DOI: 10.1016/j.cmi.2019.08.006 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
胡衍,张浩,刘晗,. 基于血管化机制构建萎缩型骨不连类器官芯片与初步实验研究[J]. 中华骨科杂志, 2023,43(24):1673-1680. DOI: 10.3760/cma.j.cn121113-20230402-00189 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Thabit AK , Fatani DF , Bamakhrama MS ,et al. Antibiotic penetration into bone and joints: An updated review[J]. Int J Infect Dis, 2019,81:128-136. DOI: 10.1016/j.ijid.2019.02.005 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
袁承杰,翁蔚宗,周启荣,. 骨髓炎骨缺损动物模型构建研究进展[J]. 中华骨与关节外科杂志, 2016,9(1):87-90,83. DOI: 10.3969/j.issn.2095-9958.2016.01-18 .
返回引文位置Google Scholar
百度学术
万方数据
[17]
白龙,苏佳灿. 骨/软骨类器官构建策略及应用前景[J]. 上海大学学报:自然科学版, 2023,29(2):185-199. DOI: 10.12066/j.issn.1007-2861.2458 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Zhang H , Wu S , Chen W ,et al. Bone/cartilage targeted hydrogel: Strategies and applications[J]. Bioact Mater, 2022,23:156-169. DOI: 10.1016/j.bioactmat.2022.10.028 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
沈芙茗,廖玲妮,王文君,. 微流控器官芯片的构建及其在模拟软骨下骨骨重塑中的应用[J]. 中华创伤杂志, 2024,40(2):179-189. DOI: 10.3760/cma.j.cn501098-20240112-00057 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Zhou Z , Cui J , Wu S ,et al. Silk fibroin-based biomaterials for cartilage/osteochondral repair [J]. Theranostics, 2022,12(11):5103-5124. DOI: 10.7150/thno.74548 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Hu Y , Zhang H , Wang S ,et al. Bone/cartilage organoid on-chip: Construction strategy and application[J]. Bioact Mater, 2023,25:29-41. DOI: 10.1016/j.bioactmat.2023.01.016 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Zhang H , Wang L , Cui J ,et al. Maintaining hypoxia environment of subchondral bone alleviates osteoarthritis progression[J]. Sci Adv, 2023,9(14):eabo7868. DOI: 10.1126/sciadv.abo7868 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
熊元,米博斌,闫晨晨,. 创伤骨科慢性难愈性创面诊疗指南(2023版)[J]. 中华创伤杂志, 2023,39(6):481-493. DOI: 10.3760/cma.j.cn501098-20230306-00118 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
张涛,崔进,苏佳灿. 皮肤类器官构建策略的研究进展[J]. 中华创伤杂志, 2024,40(1):57-64. DOI: 10.3760/cma.j.cn501098-20230728-00030 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Graves N , Phillips CJ , Harding K . A narrative review of the epidemiology and economics of chronic wounds[J]. Br J Dermatol, 2022,187(2):141-148. DOI: 10.1111/bjd.20692 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
张涛,崔进,刘媛媛,. 3D打印皮肤成体干细胞来源类器官人工皮肤修复小鼠皮肤缺损[J]. 中华创伤杂志, 2024,40(1):40-47. DOI: 10.3760/cma.j.cn501098-20230731-00049 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
曹烈虎,牛丰,张文财,. 创伤性脊柱脊髓损伤康复治疗专家共识(2020版)[J]. 中华创伤杂志, 2020,36(5):385-392. DOI: 10.3760/cma.j.issn.1001-8050.2020.05.001 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Wang Y , Lv HQ , Chao X ,et al. Multimodal therapy strategies based on hydrogels for the repair of spinal cord injury[J]. Mil Med Res, 2022,9(1):16. DOI: 10.1186/s40779-022-00376-1 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Hu X , Xu W , Ren Y ,et al. Spinal cord injury: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2023,8(1):245. DOI: 10.1038/s41392-023-01477-6 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Hughes D , Mikosch P , Belmatoug N ,et al. Gaucher disease in bone: From pathophysiology to practice[J]. J Bone Miner Res, 2019,34(6):996- 101 3 . DOI: 10.1002/jbmr.3734 .
返回引文位置Google Scholar
百度学术
万方数据
[31]
李祖浩,陈晓,苏佳灿. 骨/软骨类器官技术变革骨/软骨疾病临床诊疗策略[J]. 中国临床医学, 2024,31(3):335-342. DOI: 10.12025/j.issn.1008-6358.2024.20240493 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
Deng S , Zhang S , Shen T ,et al. Amphiphilic cytokine traps remodel marrow adipose tissue for hematopoietic microenvironment amelioration[J]. Bioact Mater, 2024,42:226-240. DOI: 10.1016/j.bioactmat.2024.08.032 .
返回引文位置Google Scholar
百度学术
万方数据
[33]
Bai L , Zhou D , Li G ,et al. Engineering bone/cartilage organoids: strategy, progress, and application[J]. Bone Res, 2024,12(1):66. DOI: 10.1038/s41413-024-00376-y .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Wang J , Wu Y , Li G ,et al. Engineering large-scale self-minera- lizing bone organoids with bone matrix-inspired hydroxyapatite hybrid bioinks[J]. Adv Mater, 2024,36(30):e2309875. DOI: 10.1002/adma.202309875 .
返回引文位置Google Scholar
百度学术
万方数据
[35]
Gu Y , Zhang W , Wu X ,et al. Organoid assessment technologies[J]. Clin Transl Med, 2023,13(12):e1499. DOI: 10.1002/ctm2.1499 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Cung M , Sosa B , Yang HS ,et al. The performance of artificial intelligence chatbot large language models to address skeletal biology and bone health queries[J]. J Bone Miner Res, 2024,39(2):106-115. DOI: 10.1093/jbmr/zjad007 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Hong N , Whittier DE , Glüer CC ,et al. The potential role for artificial intelligence in fracture risk prediction[J]. Lancet Diabetes Endocrinol, 2024,12(8):596-600. DOI: 10.1016/S2213-8587(24)00153-0 .
返回引文位置Google Scholar
百度学术
万方数据
[38]
Ma X , Rizzoglio F , Bodkin KL ,et al. Using adversarial networks to extend brain computer interface decoding accuracy over time[J]. Elife, 2023,12:e84296. DOI: 10.7554/eLife.84296 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Schwemmer MA , Skomrock ND , Sederberg PB ,et al. Meeting brain-computer interface user performance expectations using a deep neural network decoding framework[J]. Nat Med, 2018,24(11):1669-1676. DOI: 10.1038/s41591-018-0171-y .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Wang B , Gong S , Han L ,et al. Knockdown of HDAC9 inhibits osteogenic differentiation of human bone marrow mesenchymal stem cells partially by suppressing the MAPK signaling pathway[J]. Clin Interv Aging, 2022,17:777-787. DOI: 10.2147/CIA.S361008 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Lin C , Greenblatt MB , Gao G ,et al. Development of AAV- mediated gene therapy approaches to treat skeletal diseases[J]. Hum Gene Ther, 2024,35(9-10):317-328. DOI: 10.1089/hum.2024.022 .
返回引文位置Google Scholar
百度学术
万方数据
[42]
Jia S , Liang R , Chen J ,et al. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis[J]. Cell Mol Biol Lett, 2024,29(1):64. DOI: 10.1186/s11658-024-00581-x .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Karimzadeh F , Soltani Fard E , Nadi A ,et al. Advances in skin gene therapy: utilizing innovative dressing scaffolds for wound healing, a comprehensive review[J]. J Mater Chem B, 2024,12(25):6033-6062. DOI: 10.1039/d4tb00966e .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Butterfield NC , Curry KF , Steinberg J ,et al. Accelerating func tional gene discovery in osteoarthritis [J]. Nat Commun, 2021,12(1):467. DOI: 10.1038/s41467-020-20761-5 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Dovern E , Aydin M , DeBaun MR ,et al. Effect of allogeneic hematopoietic stem cell transplantation on sickle cell disease-related organ complications: A systematic review and meta-analysis[J]. Am J Hematol, 2024,99(6):1129-1141. DOI: 10.1002/ajh.27297 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Brinkert K , Hedtfeld S , Burhop A ,et al. Rescue from pseudomonas aeruginosa airway infection via stem cell transplantation[J]. Mol Ther, 2021,29(3):1324-1334. DOI: 10.1016/j.ymthe.2020.12.003 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Ma M , Zou F , Abudureheman B ,et al. Magnetic microcarriers with accurate localization and proliferation of mesenchymal stem cell for cartilage defects repairing[J]. ACS Nano, 2023,17(7):6373-6386. DOI: 10.1021/acsnano.2c10995 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Ding JY , Chen MJ , Wu LF ,et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges[J]. Mil Med Res, 2023,10(1):36. DOI: 10.1186/s40779-023-00472-w .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Sun Z , Chen Z , Yin M ,et al. Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids[J]. Cell Stem Cell, 2024,31(5):772-787.e11. DOI: 10.1016/j.stem.2024.03.007 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
贲雨龙,刘朋,郑朋飞. 儿童骨骼相关罕见病的基因治疗进展[J]. 中华骨科杂志, 2024,44(18):1246-1254. DOI: 10.3760/cma.j.cn121113-20230814-00093 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Han J , Rindone AN , Elisseeff JH . Immunoengineering biomaterials for musculoskeletal tissue repair across lifespan[J]. Adv Mater, 2024,36(28):e2311646. DOI: 10.1002/adma.202311646 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Bach MS , de Vries CR , Khosravi A ,et al. Filamentous bacteriophage delays healing of Pseudomonas-infected wounds[J]. Cell Rep Med, 2022,3(6):100656. DOI: 10.1016/j.xcrm.2022.100656 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Zhao X , Luo J , Huang Y ,et al. Injectable antiswelling and high- strength bioactive hydrogels with a wet adhesion and rapid gelling process to promote sutureless wound closure and scar-free repair of infectious wounds[J]. ACS Nano, 2023,17(21):22015-22034. DOI: 10.1021/acsnano.3c08625 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
苏佳灿,Email: mocdef.3ab61nacaijusrd
B

张元维:文献检索、论文撰写及修改;陈晓:论文撰写及修改;苏佳灿:论文设计、修改及审定

C
张元维, 陈晓, 苏佳灿. 未来10年骨科疾病诊疗的挑战与机遇[J]. 中华创伤杂志, 2025, 41(3): 231-236. DOI: 10.3760/cma.j.cn501098- 20250109-00023.
D
所有作者声明不存在利益冲突
E
国家自然科学基金重点项目 (82230071)
上海市2024年度“科技创新行动计划”创新药械产品应用示范项目 (24SF1902700)
上海申康研究型医师项目(创新团队) (SHDC2023CRT013)
上海市创新医疗器械应用示范项目 (23SHS05700)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号