综述
ENGLISH ABSTRACT
支架材料在视网膜细胞移植应用中的研究进展
阮佳莉
钱韶红 [综述]
姚静 [综述]
作者及单位信息
·
DOI: 10.3760/cma.j.issn.2095-0160.2015.09.018
Development of polymer scaffolds for retinal stem cell transplantation
Ruan Jiali
Qian Shaohong
Yao Jing
Authors Info & Affiliations
Ruan Jiali
Department of Ophthalmology, Eye & ENT Hospital Affiliated to Fudan University, Shanghai 200031, China
Qian Shaohong
Yao Jing
·
DOI: 10.3760/cma.j.issn.2095-0160.2015.09.018
375
18
0
0
0
0
PDF下载
APP内阅读
摘要

年龄相关性黄斑变性和色素性视网膜炎等视网膜变性疾病可造成光感受器丢失,从而导致永久性的视力损害。近年来诸多研究致力于研究支架材料在视网膜细胞移植中的应用。支架材料能靶向运输移植细胞,促进细胞的存活、整合和分化,为细胞移植提供良好的平台。移植细胞种类多样,不同的支架材料具有各自的优缺点,理想的支架材料应具备以下特性:薄、生物相容性好、可降解、一定的机械强度、柔韧性高、可结合性高。材料的表面修饰可帮助其更好地发挥功能。除了细胞,支架材料也可定向运输物质,如药物等。支架材料在视网膜细胞移植中具有良好的应用前景。本文总结了以输送细胞到视网膜下腔的不同支架材料为基础的移植技术的研究成果。

感光细胞;祖细胞;干细胞;支架材料;移植;视网膜
ABSTRACT

Retinal degeneration, associated with loss of photoreceptors, is the primary cause of permanent vision impairment, impacting millions of people worldwide. Age-related macular degeneration and retinitis pigmentosa are two common retinal diseases resulting in photoreceptor loss. Recently, many studies were working on the application of polymer scaffolds in retinal stem cell transplantation. The results showed that polymer scaffolds can delivery transplanted cells to the correct site and promote cell survival, integration, differentiation, thereby providing a good platform for cell transplantation. There are different transplantation cell types. Moreover, different materials have different advantages and disadvantages. The ideal scaffold should have the following characteristics: thin, biocompatible, biodegradable, certain mechanical strength and flexibility, and easy to bind. Surface modification of materials can improve their functioning. In addition to the cells, the scaffold can directional transport substances, such as drugs. Polymer scaffolds have a good prospect in the application of retinal cell transplantation. This paper summarized the findings of different scaffolds for cell delivery to the sub-retinal space-based transplant technology.

Photoreceptor;Progenitor cell;Stem cell;Scaffold;Transplantation;Retina
Qian Shaohong, Email: mocdef.3ab614032hsq
引用本文

阮佳莉,钱韶红,姚静. 支架材料在视网膜细胞移植应用中的研究进展[J]. 中华实验眼科杂志,2015,33(9):848-852.

DOI:10.3760/cma.j.issn.2095-0160.2015.09.018

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
与光感受器丢失相关的视网膜变性是永久性视力损伤的首要原因,影响全世界数百万人,而年龄相关性黄斑变性和色素性视网膜炎是导致光感受器丢失的2个常见病因。目前的临床治疗仅能延缓视网膜变性的进展,无法恢复受损的视力。如何将细胞移植到视网膜下腔以再生受损视网膜是目前研究的热点。既往采用的直接注射细胞法存在一定的弊端,主要表现为细胞生存能力、细胞整合和细胞分化等3个方面。利用支架材料为基础的输送系统将细胞移植至视网膜下腔,可克服以上缺陷,在各种视网膜变性模型中,该方法提高了细胞存活率,推动了细胞整合,也促进了细胞分化,由此视网膜组织工程在视网膜变性疾病的治疗中显示出了巨大的前景和潜力。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Tomita M , Lavik E , Klassen H ,et al. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells[J]. Stem Cells, 2005,23(10):1579-1588. doi: 10.1634/stemcells.2005-0111 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
McUsic AC , Lamba DA , Reh TA . Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds[J]. Biomaterials, 2012,33(5):1396-1405. doi: 10.1016/j.biomaterials.2011.10.083 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Thomson HA , Treharne AJ , Backholer LS ,et al. Biodegradable poly(α-hydroxy ester) blended microspheres as suitable carriers for retinal pigment epithelium cell transplantation[J]. J Biomed Mater Res A, 2010,95(4):1233-1243. doi: 10.1002/jbm.a.32940 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Christiansen AT , Kiilgaard JF , Smith M ,et al. The influence of brightness on functional assessment by mferg:a study on scaffolds used in retinal cell transplantation in pigs[J/OL]. Stem Cells Int, 2012,2012:263264[2015-02-19]. http://www.hindawi.com/journals/sci/2012/263264. doi: 10.1155/2012/263264 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
McUsic AC , Lamba DA , Reh TA . Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds[J]. Biomaterials, 2012,33(5):1396-1405. doi: 10.1016/j.biomaterials.2011.10.083 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Rong X , Yang S , Miao H ,et al. Effects of erythropoietin-dextran microparticle-based PLGA/PLA microspheres on RGCs[J]. Invest Ophthalmol Vis Sci, 2012,53(10):6025-6034. doi: 10.1167/iovs.12-9898 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Du J , Shi QS , Sun Y ,et al. Enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly l-lysine nanoparticles loading platelet-derived growth factor BB small interfering RNA by ultrasound and/or microbubbles to rat retinal pigment epithelium cells[J]. J Gene Med, 2011,13(6):312-323. doi: 10.1002/jgm.1574 .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Tao S , Young C , Redenti S ,et al. Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space[J]. Lab Chip, 2007,7(6):695-701. doi: 10.1039/B618583E .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Christiansen AT , Tao SL , Smith M ,et al. Subretinal implantation of electrospun, short nanowire, and smooth poly(ε-caprolactone) scaffolds to the subretinal space of porcine eyes[J/OL]. Stem Cells Int, 2012,2012:454295[2015-02-24]. http://www.hindawi.com/journals/sci/2012/454295. doi: 10.1155/2012/454295 .
返回引文位置Google Scholar
百度学术
万方数据
[10]
McHugh KJ , Tao SL , Saint-Geniez M . Porous poly(ε-caprolactone) scaffolds for retinal pigment epithelium transplantation[J]. Invest Ophthalmol Vis Sci, 2014,55(3):1754-1762. doi: 10.1167/iovs.13-12833 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Redenti S , Neeley WL , Rompani S ,et al. Engineering retinal progenitor cell and scrollable poly (glycerol-sebacate) composites for expansion and subretinal transplantation[J]. Biomaterials, 2009,30(20):3405-3414. doi: 10.1016/j.biomaterials.2009.02.046 .
返回引文位置Google Scholar
百度学术
万方数据
[12]
Ballios BG , Cooke MJ , van der Kooy D ,et al. A hydrogel-based stem cell delivery system to treat retinal degenerative diseases[J]. Biomaterials, 2010,31(9):2555-2564. doi: 10.1016/j.biomaterials.2009.12.004 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Liu Z , Yu N , Holz FG ,et al. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography[J]. Biomaterials, 2014,35(9):2837-2850. doi: 10.1016/j.biomaterials.2013.12.069 .
返回引文位置Google Scholar
百度学术
万方数据
[14]
Warnke PH , Alamein M , Skabo S ,et al. Primordium of an artificial Bruch's membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers[J]. Acta Biomater, 2013,9(12):9414-9422. doi: 10.1016/j.actbio.2013.07.029 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Chen H , Fan X , Xia J ,et al. Electrospun chitosan-graft-poly (varepsilon-caprolactone)/poly (varepsilon-caprolactone) nanofibrous scaffolds for retinal tissue engineering[J]. Int J Nanomedicine, 2011,6:453-461. doi: 10.2147/IJN.S17057 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Nadri S , Kazemi B , Eslaminejad MB ,et al. High yield of cells committed to the photoreceptor-like cells from conjunctiva mesenchymal stem cells on nanofibrous scaffolds[J]. Mol Biol Rep, 2013,40(6):3883-3890. doi: 10.1007/s11033-012-2360-y .
返回引文位置Google Scholar
百度学术
万方数据
[17]
Albani D , Gloria A , Giordano C ,et al. Hydrogel-based nanocomposites and mesenchymal stem cells:a promising synergistic strategy for neurodegenerative disorders therapy[J/OL]. Scientific World Journal, 2013,2013:270260[2015-02-23]. http://www.hindawi.com/journals/tswj/2013/270260. doi: 10.1155/2013/270260 .
返回引文位置Google Scholar
百度学术
万方数据
[18]
Elliott Donaghue I , Tam R , Sefton MV ,et al. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system[J]. J Control Release, 2014,190:219-227. doi: 10.1016/j.jconrel.2014.05.040 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Pandey M , Mohd Amin MC . CNS neurotoxicity of bacterial cellulose-poly (acrylamide-sodium acrylate) hydrogel:a future therapeutic carrier[J]. CNS Neurosci Ther, 2014,20(4):377-378. doi: 10.1111/cns.12237 .
返回引文位置Google Scholar
百度学术
万方数据
[20]
Zustiak SP , Pubill S , Ribeiro A ,et al. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds as a cell delivery vehicle:characterization of PC12 cell response[J]. Biotechnol Prog, 2013,29(5):1255-1264. doi: 10.1111/cns.12237 .
返回引文位置Google Scholar
百度学术
万方数据
[21]
Hwang YS , Chiang PR , Hong WH ,et al. Study in vivo intraocular biocompatibility of in situ gelation hydrogels:poly (2-ethyl oxazoline)-block-poly (epsilon-caprolactone)-block-poly(2-ethyl oxazoline) copolymer, matrigel and pluronic F127[J/OL]. PLoS One, 2013,8(7):e67495[2015-02-27]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067495. doi: 10.1371/journal.pone.0067495 .
返回引文位置Google Scholar
百度学术
万方数据
[22]
Stanzel BV , Liu Z , Brinken R ,et al. Subretinal delivery of ultrathin rigid-elastic cell carriers using a metallic shooter instrument and biodegradable hydrogel encapsulation[J]. Invest Ophthalmol Vis Sci, 2012,53(1):490-500. doi: 10.1167/iovs.11-8260 .
返回引文位置Google Scholar
百度学术
万方数据
[23]
Turturro SB , Guthrie MJ , Appel AA ,et al. The effects of cross-linked thermo-responsive PNIPAAm-based hydrogel injection on retinal function[J]. Biomaterials, 2011,32(14):3620-3626. doi: 10.1016/j.biomaterials.2011.01.058 .
返回引文位置Google Scholar
百度学术
万方数据
[24]
Hertz J , Robinson R , Valenzuela DA ,et al. A tunable synthetic hydrogel system for culture of retinal ganglion cells and amacrine cells[J]. Acta Biomater, 2013,9(8):7622-7629. doi: 10.1016/j.actbio.2013.04.048 .
返回引文位置Google Scholar
百度学术
万方数据
[25]
Gualdoni S , Baron M , Lakowski J ,et al. Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors[J]. Stem Cell, 2010,28:1048-1059. doi: 10.1002/stem.423 .
返回引文位置Google Scholar
百度学术
万方数据
[26]
Stern J , Temple S . Stem cells for retinal repair[J]. Dev Ophthalmol, 2014,53:70-80. doi: 10.1159/000357328 .
返回引文位置Google Scholar
百度学术
万方数据
[27]
Tucker BA , Park IH , Qi SD ,et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice[J/OL]. PLoS One, 2011,6(4):e18992[2015-02-16]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018992. doi: 10.1371/journal.pone.0018992 .
返回引文位置Google Scholar
百度学术
万方数据
[28]
Klassen HJ , Ng TF , Kurimoto Y ,et al. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior[J]. Invest Ophthalmol Vis Sci, 2004,45(11):4167-4173. doi: 10.1167/iovs.04-0511 .
返回引文位置Google Scholar
百度学术
万方数据
[29]
Pearson RA , Barber AC , Rizzi M ,et al. Restoration of vision after transplantation of photoreceptors[J]. Nature, 2012,485(7396):99-103. doi: 10.1038/nature10997 .
返回引文位置Google Scholar
百度学术
万方数据
[30]
Lu L , Yaszemski MJ , Mikos AG . Retinal pigment epithelium engineering using synthetic biodegradable polymers[J]. Biomaterials, 2001,22(24):3345-3355.
返回引文位置Google Scholar
百度学术
万方数据
[31]
Seiler MJ , Aramant RB . Cell replacement and visual restoration by retinal sheet transplants[J]. Prog Retin Eye Res, 2012,31(6):661-687. doi: 10.1016/j.preteyeres.2012.06.003 .
返回引文位置Google Scholar
百度学术
万方数据
[32]
del Cerro M , Notter MF , Grover DA ,et al. Retinal transplants for cell replacement in phototoxic retinal degeneration[J]. Prog Clin Biol Res, 1989,314:673-686.
返回引文位置Google Scholar
百度学术
万方数据
[33]
Lee E , MacLaren RE . Sources of retinal pigment epithelium (RPE) for replacement therapy[J]. Br J Ophthalmol, 2011,95(4):445-449. doi: 10.1136/bjo.2009.171918 .
返回引文位置Google Scholar
百度学术
万方数据
[34]
Livesey FJ , Cepko CL . Vertebrate neural cell-fate determination:lessons from the retina[J]. Nat Rev Neurosci, 2001,2(2):109-118.
返回引文位置Google Scholar
百度学术
万方数据
[35]
Okano H , Temple S . Cell types to order:temporal specification of CNS stem cells[J]. Curr Opin Neurobiol, 2009,19(2):112-119. doi: 10.1016/j.conb.2009.04.003 .
返回引文位置Google Scholar
百度学术
万方数据
[36]
Osakada F , Jin ZB , Hirami Y ,et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction[J]. J Cell Sci, 2009,122(Pt 17):3169-3179. doi: 10.1242/jcs.050393 .
返回引文位置Google Scholar
百度学术
万方数据
[37]
Bhang SH , Lim JS , Choi CY ,et al. The behavior of neural stem cells on biodegradable synthetic polymers[J]. J Biomater Sci Polym Ed, 2007,18(2):223-239.
返回引文位置Google Scholar
百度学术
万方数据
[38]
Lavik EB , Klassen H , Warfvinge K ,et al. Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors[J]. Biomaterials, 2005,26(16):3187-3196. doi: 10.1016/j.biomaterials.2004.08.022 .
返回引文位置Google Scholar
百度学术
万方数据
[39]
Neeley WL , Redenti S , Klassen H ,et al. A microfabricated scaffold for retinal progenitor cell grafting[J]. Biomaterials, 2008,29(4):418-426. doi: 10.1016/j.biomaterials.2007.10.007 .
返回引文位置Google Scholar
百度学术
万方数据
[40]
Treharne AJ , Grossel MC , Lotery AJ ,et al. The chemistry of retinal transplantation:the influence of polymer scaffold properties on retinal cell adhesion and control[J]. Br J Ophthalmol, 2011,95(6):768-773. doi: 10.1136/bjo.2010.184002 .
返回引文位置Google Scholar
百度学术
万方数据
[41]
Steiner-Champliaud MF , Sahel J , Hicks D . Retinoschisin forms a multi-molecular complex with extracellular matrix and cytoplasmic proteins:interactions with beta2 laminin and alphaB-crystallin[J]. Mol Vis, 2006,12:892-901.
返回引文位置Google Scholar
百度学术
万方数据
[42]
Rowland TJ , Blaschke AJ , Buchholz DE ,et al. Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined conditions using purified extracellular matrix proteins[J]. J Tissue Eng Regen Med, 2013,7(8):642-653. doi: 10.1002/term.1458 .
返回引文位置Google Scholar
百度学术
万方数据
[43]
Aizawa Y , Shoichet MS . The role of endothelial cells in the retinal stem and progenitor cell niche within a 3D engineered hydrogel matrix[J]. Biomaterials, 2012,33(21):5198-5205. doi: 10.1016/j.biomaterials.2012.03.062 .
返回引文位置Google Scholar
百度学术
万方数据
[44]
Redenti S , Tao S , Yang J ,et al. Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold[J]. J Ocul Biol Dis Infor, 2008,1(1):19-29. doi: 10.1007/s12177-008-9005-3 .
返回引文位置Google Scholar
百度学术
万方数据
[45]
Garg T , Singh O , Arora S ,et al. Scaffold:a novel carrier for cell and drug delivery.[J]. Crit Rev Ther Drug Carrier Syst, 2012,29:1-63. doi: 10.1615/CritRevTherDrugCarrierSyst.v29.i1.10 .
返回引文位置Google Scholar
百度学术
万方数据
[46]
Mazumder MA , Fitzpatrick SD , Muirhead B ,et al. Cell-adhesive thermogelling PNIPAAm/hyaluronic acid cell delivery hydrogels for potential application as minimally invasive retinal therapeutics[J]. J Biomed Mater Res A, 2012,100(7):1877-1887. doi: 10.1002/jbm.a.34021 .
返回引文位置Google Scholar
百度学术
万方数据
[47]
Tezcaner A , Hicks D . In vitro characterization of micropatterned PLGA-PHBV8 blend films as temporary scaffolds for photoreceptor cells[J]. J Biomed Mater Res A, 2008,86(1):170-181. doi: 10.1002/jbm.a.34021 .
返回引文位置Google Scholar
百度学术
万方数据
[48]
Tucker BA , Redenti SM , Jiang C ,et al. The use of progenitor cell/biodegradable MMP2-PLGA polymer constructs to enhance cellular integration and retinal repopulation[J]. Biomaterials, 2010,31(1):9-19. doi: 10.1016/j.biomaterials.2009.09.015 .
返回引文位置Google Scholar
百度学术
万方数据
[49]
Yao J , Tucker BA , Zhang X ,et al. Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells[J]. Biomaterials, 2011,32(4):1041-1050. doi: 10.1016/j.biomaterials.2010.09.063 .
返回引文位置Google Scholar
百度学术
万方数据
[50]
Cao L , Wang H , Wang F . Amyloid-beta-induced matrix metalloproteinase-9 secretion is associated with retinal pigment epithelial barrier disruption[J]. Int J Mol Med, 2013,31(5):1105-1112. doi: 10.3892/ijmm.2013.1310 .
返回引文位置Google Scholar
百度学术
万方数据
[51]
Fernandez-Robredo P , Sadaba LM , Salinas-Alaman A ,et al. Effect of lutein and antioxidant supplementation on VEGF expression, MMP-2 activity, and ultrastructural alterations in apolipoprotein E-deficient mouse[J/OL]. Oxid Med Cell Longev, 2013,2013:213505[2015-03-05]. http://www.hindawi.com/journals/omcl/2013/213505. doi: 10.1155/2013/213505 .
返回引文位置Google Scholar
百度学术
万方数据
[52]
Ma J , Zhu TP , Moe MC ,et al. Opticin production is reduced by hypoxia and VEGF in human retinal pigment epithelium via MMP-2 activation[J]. Cytokine, 2012,59(1):100-107. doi: 10.1016/j.cyto.2012.03.025 .
返回引文位置Google Scholar
百度学术
万方数据
[53]
Wang J , Cui J , Zhu H . Suppression of type I collagen in human scleral fibroblasts treated with extremely low-frequency electromagnetic fields[J]. Mol Vis, 2013,19:885-893.
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
钱韶红,Email: mocdef.3ab614032hsq
B
国家自然科学基金项目 (81401533)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号