实验研究
ENGLISH ABSTRACT
盐酸特比萘芬纳米乳剂点眼经角膜途径的吸收及分布特征
周天洋
夏慧芸
何继军
刘素素
贺司宇
张俊杰
作者及单位信息
·
DOI: 10.3760/cma.j.issn.2095-0160.2015.10.010
Absorption and distribution characteristics of terbinafine hydrochloride nanoemulsions in cornea after instillation
Zhou Tianyang
Xia Huiyun
He Jijun
Liu Susu
He Siyu
Zhang Junjie
Authors Info & Affiliations
Zhou Tianyang
Henan Eye Institute, Henan Eye Hospital, Zhengzhou 450003, China
Xia Huiyun
He Jijun
Liu Susu
He Siyu
Zhang Junjie
·
DOI: 10.3760/cma.j.issn.2095-0160.2015.10.010
561
10
0
0
1
0
PDF下载
APP内阅读
摘要

背景纳米乳剂(NEs)具有稳定性好、毒性及刺激性小、载药量大及大幅度提高药物生物利用度的优点,是目前眼局部给药领域研究和应用最多的纳米给药系统之一,眼局部给药后主要经角膜途径吸收。尽管NEs具有很多物理化学和生理学优点,但其吸收分布受到角膜各层组织结构的影响。

目的观察角膜上皮和基质对眼用盐酸特比萘芬纳米乳剂(TH-NEs)经角膜途径吸收及分布的影响。

方法自乳化法制备TH-NEs,光散射粒度分析仪测定纳米乳滴的粒径及Zeta电位,高效液相色谱法(HPLC)观察TH-NEs的体外释放特征。取新西兰白兔60只,按照随机数字表法分为完整角膜组和去角膜上皮组,每组30只,其中去角膜上皮组左眼去除角膜上皮;2个组实验兔随机平均分配于5个时间点,均以左眼为实验眼。TH-NEs点实验眼,分别于给药后15、30、60、120及240 min处死动物,剖取角膜组织,HPLC法测定角膜组织中TH质量分数。以荧光素二乙酸酯(FDA)对TH-NEs进行荧光标记,取4只C57BL/6小鼠,任意取其中2只小鼠麻醉后去除左眼角膜上皮,均以左眼为实验眼,荧光标记TH-NEs点眼,双光子激光扫描共焦显微镜观察给药后30 min及60 min角膜中荧光标记TH-NEs的分布情况。

结果TH-NEs中乳滴的平均粒径为51.37 nm,Zeta电位为-0.232 7 mV;加药后12 h,药物的累积释放量为0.482%;兔眼完整角膜和去上皮角膜中药物质量分数的达峰时间均为15 min,药物的峰质量分数分别为(17.85±2.79)μg/g和(4.40±1.75)μg/g。给药后15、30、60和120 min,完整角膜中药物的平均质量分数均显著高于去上皮角膜,差异均有统计学意义( t=9.998、8.658、6.903、7.576,均 P=0.000)。给药后30 min和60 min,小鼠完整角膜中荧光标记TH-NEs均分布于角膜上皮,且角膜上皮表层荧光强度明显高于角膜上皮深层,而在去上皮角膜和完整角膜中,角膜基质内均未检测到FDA荧光。

结论TH-NEs点眼后,角膜上皮是TH-NEs经角膜途径吸收和分布的主要部位,而角膜基质层是TH-NEs向眼内扩散的主要屏障。角膜基质层可能是通过尺寸排阻作用阻碍TH-NEs的渗透。

盐酸特比萘芬;纳米乳剂;角膜上皮;角膜基质;组织分布
ABSTRACT

BackgroundNanoemulsions (NEs) is one of the most popular ophthalmic colloidal drug delivery system due to its long-term stability, low toxicity and irritancy, considerable capacity for solubilization of lipophilic drug molecules and great potential in bioavailability improvement.The cornea pathway is the main route of intraocular absorption after topical use of NEs.Though NEs possess numerous physiological and physicochemical advantages, the use of NEs cannot always obtain satisfactory results.

ObjectiveThis study was to investigate the impacts of epithelium and stroma on the corneal permeation of topical ophthalmic terbinafine hydrochloride nanoemulsions (TH-NEs).

MethodsTH-NEs was prepared by the self-emulsification method.The size and Zeta potential of the oil droplets in the formulation were analyzed using a dynamic light-scattering particle size analyzer.The high performance liquid chromatography (HPLC) was used for the in vitro release study.Sixty New Zealand albino rabbits were randomly divided into intact cornea group and cornea epithelium debrided group.The cornea epithelium of the left eyes was debrided in the cornea epithelium debrided group.The TH-NEs were instilled into the lower conjunctival sac of left eyes.Six rabbits were executed from each group 15, 30, 60, 120 and 240 minutes after dosing, respectively.The corneas were collected and analyzed by HPLC.The fluorescein diacetate (FDA) was used to label the TH-NEs.Two C57BL/6 mice with left cornea epithelium debrided and 2 normal mice were used for the fluorescence tracing study.The fluorescence distribution of FDA labeled TH-NEs was observed by a two-photon laser confocal scanning microscope 30 minutes and 60 minutes after single instillation.

ResultsThe average size and Zeta potential of the oil droplets were 51.37 nm and -0.232 7 mV respectively, and 0.482% of encapsulated drugs was released from the TH-NEs after 12 hours.The peak concentrations of TH in the intact cornea and epithelium debrided cornea were (17.85±2.79)μg/g and (4.40±1.75)μg/g respectively, which occurred 15 minutes post-dose.The drug concentrations in the intact cornea were significantly higher than that in the debrided cornea 15, 30, 60 and 120 minutes after dosing, with significant differences between them ( t=9.998, 8.658, 6.903, 7.576; all at P=0.000). The fluorescence was observed in the cornea epithelium when the cornea was intact.The fluorescence intensity in the superior layer of corneal epithelium was obviously higher than that in the deep layers of corneal epithelium 30 minutes and 60 minutes after dosing.No fluorescence was observed in the cornea stroma of both eyes.

ConclusionsThe cornea epithelium is the main of absorption and distribution position of TH-NEs.The cornea stroma is the dominating permeation barrier for the intraocular transportation of the TH-NEs.The cornea stroma may stop the permeation of TH-NEs by molecular exclusion mechanism.

Terbinafine hydrochloride;Nanoemulsions;Corneal epithelium;Corneal stroma;Tissue distribution
Zhang Junjie, Email: mocdef.6ab2166jjgnahz
引用本文

周天洋,夏慧芸,何继军,等. 盐酸特比萘芬纳米乳剂点眼经角膜途径的吸收及分布特征[J]. 中华实验眼科杂志,2015,33(10):910-914.

DOI:10.3760/cma.j.issn.2095-0160.2015.10.010

PERMISSIONS

Request permissions for this article from CCC.

评价本文
*以上评分为匿名评价
目前,治疗眼前节疾病的药物大部分采用传统的眼表给药方式,滴眼剂是较常用的剂型,然而由于眼部解剖结构的特殊性和各种生理屏障的存在,滴眼剂的生物利用度很低 [ 1 , 2 , 3 ]。纳米给药系统的开发和应用为眼部给药系统的研究带来了革命性的影响 [ 4 , 5 ],包括纳米乳剂(nanoemulsions,NEs)及纳米粒(nanoparticls,NPs)等在内的纳米给药系统不仅可以提高药物的生物利用度,还可以减少药物的全身吸收、局部刺激性和不良反应。NEs还具有对亲脂性药物增溶作用强、热力学稳定性好和铺展性好等优点,具有较好的应用前景 [ 5 , 6 ]。抗真菌药物盐酸特比萘芬(terbinafine hydrochloride,TH)亲脂性强,需制备成油剂后点眼给药,而油剂对眼表的刺激性较强,吸收差且不规律,大大限制了TH在眼部临床治疗中的应用。将TH制成NEs(TH-NEs)可显著降低其眼部的刺激性,但同时也发现,与油剂相比,TH-NEs并不能大幅增加眼内TH的浓度 [ 7 ],将TH制备成NPs(TH-NPs)同样也未能显著改善TH的眼内吸收情况 [ 8 ],故推测TH-NEs不能有效地透过角膜。在角膜抗真菌治疗过程中,将抗真菌药物输送至真菌感染部位是治疗的关键。真菌的感染部位多位于角膜基质内,抗真菌药物在角膜基质中的吸收分布对最终疗效的影响较大,而目前关于TH-NEs在角膜中的分布情况鲜见报道。本研究旨在揭示TH-NEs在角膜中的吸收和分布特征,观察角膜上皮层和基质层对TH-NEs吸收和分布的影响。
试读结束,您可以通过登录机构账户或个人账户后获取全文阅读权限。
参考文献
[1]
Diebold Y , Calonge M Applications of nanoparticles in ophthalmology[J]Prog Retin Eye Res, 2010,29(6):596-609. doi: 10.1016/j.preteyeres.2010.08.002 .
返回引文位置Google Scholar
百度学术
万方数据
[2]
Barar J , Javadzadeh AR , Omidi Y Ocular novel drug delivery:impacts of membranes and barriers[J]Expert Opin Drug Deliv, 2008,5(5):567-581. doi: 10.1517/17425247.5.5.567 .
返回引文位置Google Scholar
百度学术
万方数据
[3]
Gaudana R , Ananthula HK , Parenky A ,et al. Ocular drug delivery[J]AAPS J, 2010,12(3):348-360. doi: 10.1208/s12248-010-9183-3 .
返回引文位置Google Scholar
百度学术
万方数据
[4]
Sahoo SK , Dilnawaz F , Krishnakumar S Nanotechnology in ocular drug delivery[J]Drug Discov Today, 2008,13(3-4):144-151. doi: 10.1016/j.drudis.2007.10.021 .
返回引文位置Google Scholar
百度学术
万方数据
[5]
Cholkar K , Patel SP , Vadlapudi AD ,et al. Novel strategies for anterior segment ocular drug delivery[J]J Ocul Pharmacol Ther, 2013,29(2):106-123. doi: 10.1089/jop.2012.0200 .
返回引文位置Google Scholar
百度学术
万方数据
[6]
Tamilvanan S Oil-in-water lipid emulsions:implications for parenteral and ocular delivering systems[J]Prog Lipid Res, 2004,43(6):489-533. doi: 10.1016/j.plipres.2004.09.001 .
返回引文位置Google Scholar
百度学术
万方数据
[7]
Tayel SA , El-Nabarawi MA , Tadros MI ,et al. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride:design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits[J]Int J Pharm, 2013,443(1-2):293-305. doi: 10.1016/j.ijpharm .
返回引文位置Google Scholar
百度学术
万方数据
[8]
Tayel SA , El-Nabarawi MA , Tadros MI ,et al. Positively charged polymeric nanoparticle reservoirs of terbinafine hydrochloride:preclinical implications for controlled drug delivery in the aqueous humor of rabbits[J]AAPS Pharm Sci Tech, 2013,14(2):782-793. doi: 10.1208/s12249-013-9964-y .
返回引文位置Google Scholar
百度学术
万方数据
[9]
Hämäläinen KM , Kananen K , Auriola S ,et al. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera[J]Invest Ophthalmol Vis Sci, 1997,38(3):627-634.
返回引文位置Google Scholar
百度学术
万方数据
[10]
Wadhwa S , Paliwal R , Paliwal SR ,et al. Nanocarriers in ocular drug delivery:an update review[J]Curr Pharm Des, 2009,15(23):2724-2750. doi: 10.2174/138161209788923886 .
返回引文位置Google Scholar
百度学术
万方数据
[11]
Pleyer U , Grammer J , Kosmidis P ,et al. Analysis of interactions between the corneal epithelium and liposomes:qualitative and quantitative fluorescence studies of a corneal epithelial cell line[J]Surv Ophthalmol, 1995,39Suppl 1:S3-16.
返回引文位置Google Scholar
百度学术
万方数据
[12]
Hegde RR , Verma A , Ghosh A Microemulsion:new insights into the ocular drug delivery[J/OL]ISRN Pharm, 2013,2013:826798[2015-07-26]http://www.hindawi.com/journals/isrn/2013/826798. doi: 10.1155/2013/826798 .
返回引文位置Google Scholar
百度学术
万方数据
[13]
Zimmer A , Kreuter J , Robinson JR . Studies on the transport pathway of PBCA nanoparticles in ocular tissues[J]J Microencapsul, 1991,8(4):497-504.
返回引文位置Google Scholar
百度学术
万方数据
[14]
De Campos AM , Sánchez A , Gref R ,et al. The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa[J]Eur J Pharm Sci, 2003,20(1):73-81. doi: 10.1016/S0928-0987(03)00178-7 .
返回引文位置Google Scholar
百度学术
万方数据
[15]
Lu Y , Park K Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs[J]Int J Pharm, 2013,453(1):198-214. doi: 10.1016/j.ijpharm.2012.08.042 .
返回引文位置Google Scholar
百度学术
万方数据
[16]
Müller LJ , Pels E , Schurmans LR ,et al. A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma[J]Exp Eye Res, 2004,78(3):493-501.
返回引文位置Google Scholar
百度学术
万方数据
[17]
Meek KM , Boote C The organization of collagen in the corneal stroma[J]Exp Eye Res, 2004,78(3):503-512.
返回引文位置Google Scholar
百度学术
万方数据
[18]
Jain D , Carvalho E , Banerjee R Biodegradable hybrid polymeric membranes for ocular drug delivery[J]Acta Biomater, 2010,6(4):1370-1379. doi: 10.1016/j.actbio.2009.11.001 .
返回引文位置Google Scholar
百度学术
万方数据
[19]
Lieleg O , Ribbeck K Biological hydrogels as selective diffusion barriers[J]Trends Cell Biol, 2011,21(9):543-551. doi: 10.1016/j.tcb.2011.06.002 .
返回引文位置Google Scholar
百度学术
万方数据
备注信息
A
张俊杰,Email: mocdef.6ab2166jjgnahz
B
国家自然科学基金项目 (U1404832)
评论 (0条)
注册
登录
时间排序
暂无评论,发表第一条评论抢沙发
MedAI助手(体验版)
文档即答
智问智答
机器翻译
回答内容由人工智能生成,我社无法保证其准确性和完整性,该生成内容不代表我们的态度或观点,仅供参考。
生成快照
文献快照

你好,我可以帮助您更好的了解本文,请向我提问您关注的问题。

0/2000

《中华医学会杂志社用户协议》 | 《隐私政策》

《SparkDesk 用户协议》 | 《SparkDesk 隐私政策》

网信算备340104764864601230055号 | 网信算备340104726288401230013号

技术支持:

历史对话
本文全部
还没有聊天记录
设置
模式
纯净模式沉浸模式
字号