参考文献[1]
TanWL, WongTL, WongMC, et al. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans[J]. Clin Oral Implants Res, 2012, 23Suppl 5: 1-21. .
[2]
Avila-OrtizG, ChambroneL, VignolettiF. Effect of alveolar ridge preservation interventions following tooth extraction: a systematic review and meta-analysis[J]. J Clin Periodontol, 2019, 46Suppl 21: 195-223. .
[3]
AtiehMA, AlsabeehaNH, PayneAG, et al. Interventions for replacing missing teeth: alveolar ridge preservation techniques for dental implant site development[J]. Cochrane Database Syst Rev, 2021, 4(4): CD010176. .
[4]
Tan-ChuJH, TuminelliFJ, KurtzKS, et al. Analysis of buccolingual dimensional changes of the extraction socket using the "ice cream cone" flapless grafting technique[J]. Int J Periodontics Restorative Dent, 2014, 34(3): 399-403. .
[5]
FaourO, DimitriouR, CousinsCA, et al. The use of bone graft substitutes in large cancellous voids: any specific needs?[J]. Injury, 2011, 42Suppl 2: S87-90. .
[6]
MardasN, Trullenque-ErikssonA, MacBethN, et al. Does ridge preservation following tooth extraction improve implant treatment outcomes: a systematic review: group 4: therapeutic concepts & methods[J]. Clin Oral Implants Res, 2015, 26Suppl 11: 180-201. .
[7]
CardaropoliD, TamagnoneL, RoffredoA, et al. Socket preservation using bovine bone mineral and collagen membrane: a randomized controlled clinical trial with histologic analysis[J]. Int J Periodontics Restorative Dent, 2012, 32(4): 421-430.
[8]
BalliG, IoannouA, PowellCA, et al. Ridge preservation procedures after tooth extractions: a systematic review[J]. Int J Dent, 2018, 2018: 8546568. .
[9]
RabeloGD, de PaulaPM, RochaFS, et al. Retrospective study of bone grafting procedures before implant placement[J]. Implant Dent, 2010, 19(4): 342-350. .
[10]
GapskiR, SatheeshK, CobbCM. Histomorphometric analysis of bone density in the maxillary tuberosity of cadavers: a pilot study[J]. J Periodontol, 2006, 77(6): 1085-1090. .
[11]
ElgaliI, TurriA, XiaW, et al. Guided bone regeneration using resorbable membrane and different bone substitutes: early histological and molecular events[J]. Acta Biomater, 2016, 29: 409-423. .
[12]
McAllisterBS, HaghighatK. Bone augmentation techniques[J]. J Periodontol, 2007, 78(3): 377-396. .
[13]
MischCM. Comparison of intraoral donor sites for onlay grafting prior to implant placement[J]. Int J Oral Maxillofac Implants, 1997, 12(6): 767-776.
[14]
YoungerEM, ChapmanMW. Morbidity at bone graft donor sites[J]. J Orthop Trauma, 1989, 3(3): 192-195. .
[15]
DiasRR, SehnFP, de Santana SantosT, et al. Corticocancellous fresh-frozen allograft bone blocks for augmenting atrophied posterior mandibles in humans[J]. Clin Oral Implants Res, 2016, 27(1): 39-46. .
[16]
MacedoLG, Mazzucchelli-CosmoLA, MacedoNL, et al. Fresh-frozen human bone allograft in vertical ridge augmentation: clinical and tomographic evaluation of bone formation and resorption[J]. Cell Tissue Bank, 2012, 13(4): 577-586. .
[17]
LyfordRH, MillsMP, KnappCI, et al. Clinical evaluation of freeze-dried block allografts for alveolar ridge augmentation: a case series[J]. Int J Periodontics Restorative Dent, 2003, 23(5): 417-425.
[18]
MellonigJT, BowersGM, BaileyRC. Comparison of bone graft materials. Part Ⅰ. New bone formation with autografts and allografts determined by Strontium-85[J]. J Periodontol, 1981, 52(6): 291-296. .
[19]
ZhaoH, HuJ, ZhaoL. Histological analysis of socket preservation using DBBM. A systematic review and meta-analysis[J]. J Stomatol Oral Maxillofac Surg, 2020, 121(6): 729-735. .
[20]
SkoglundA, HisingP, YoungC. A clinical and histologic examination in humans of the osseous response to implanted natural bone mineral[J]. Int J Oral Maxillofac Implants, 1997, 12(2): 194-199.
[21]
De AzaPN, LuklinskaZB, SantosC, et al. Mechanism of bone-like formation on a bioactive implant in vivo[J]. Biomaterials, 2003, 24(8): 1437-1445. .
[22]
MoimasL, BiasottoM, Di LenardaR, et al. Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds[J]. Acta Biomater, 2006, 2(2): 191-199. .
[23]
RahamanMN, DayDE, BalBS, et al. Bioactive glass in tissue engineering[J]. Acta Biomater, 2011, 7(6): 2355-2373. .
[24]
Fernandez de GradoG, KellerL, Idoux-GilletY, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management[J]. J Tissue Eng, 2018, 9: 2041731418776819. .
[25]
CampanaV, MilanoG, PaganoE, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice[J]. J Mater Sci Mater Med, 2014, 25(10): 2445-2461. .
[26]
UskokovićV, UskokovićDP. Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents[J]. J Biomed Mater Res B Appl Biomater, 2011, 96(1): 152-191. .
[27]
RastogiP, SainiH, SinghalR, et al. Periodontal regeneration in deep intrabony periodontal defect using hydroxyapatite particles with platelet rich fibrin membrane-a case report[J]. J Oral Biol Craniofac Res, 2011, 1(1): 41-43. .
[28]
OsbornJF, NeweselyH. The material science of calcium phosphate ceramics[J]. Biomaterials, 1980, 1(2): 108-111. .
[29]
JarchoM. Calcium phosphate ceramics as hard tissue prosthetics[J]. Clin Orthop Relat Res, 1981(157): 259-278.
[30]
XieJ, BaumannMJ, McCabeLR. Osteoblasts respond to hydroxyapatite surfaces with immediate changes in gene expression[J]. J Biomed Mater Res A, 2004, 71(1): 108-117. .
[31]
BucholzRW. Nonallograft osteoconductive bone graft substitutes[J]. Clin Orthop Relat Res, 2002(395): 44-52. .
[32]
NolffMC, GellrichNC, HauschildG, et al. Comparison of two beta-tricalcium phosphate composite grafts used for reconstruction of mandibular critical size bone defects[J]. Vet Comp Orthop Traumatol, 2009, 22(2): 96-102.
[33]
FrayssinetP, MathonD, LerchA, et al. Osseointegration of composite calcium phosphate bioceramics[J]. J Biomed Mater Res, 2000, 50(2): 125-130. .
[34]
MalhotraA, HabibovicP. Calcium phosphates and angiogenesis: implications and advances for bone regeneration[J]. Trends Biotechnol, 2016, 34(12): 983-992. .
[35]
ShenR, XuW, XueY, et al. The use of chitosan/PLA nano-fibers by emulsion eletrospinning for periodontal tissue engineering[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup2): 419-430. .
[36]
Carlo ReisEC, BorgesAP, AraújoMV, et al. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct[J]. Biomaterials, 2011, 32(35): 9244-9253. .
[37]
NartJ, BarallatL, JimenezD, et al. Radiographic and histological evaluation of deproteinized bovine bone mineral vs. deproteinized bovine bone mineral with 10% collagen in ridge preservation. A randomized controlled clinical trial[J]. Clin Oral Implants Res, 2017, 28(7): 840-848. .
[38]
MonjeA, O′ValleF, Monje-GilF, et al. Cellular, vascular, and histomorphometric outcomes of solvent-dehydrated vs freeze-dried allogeneic graft for maxillary sinus augmentation: a randomized case series[J]. Int J Oral Maxillofac Implants, 2017, 32(1): 121-127. .
[39]
GalloP, Díaz-BáezD, PerdomoS, et al. Comparative analysis of two biomaterials mixed with autogenous bone graft for vertical ridge augmentation: a histomorphometric study in humans[J]. Clin Implant Dent Relat Res, 2022, 24(5): 709-719. .
[40]
WeiL, MironRJ, ShiB, et al. Osteoinductive and osteopromotive variability among different demineralized bone allografts[J]. Clin Implant Dent Relat Res, 2015, 17(3): 533-542. .
[41]
ScaranoA, DegidiM, IezziG, et al. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man[J]. Implant Dent, 2006, 15(2): 197-207. .
[42]
AraújoMG, LiljenbergB, LindheJ. Dynamics of Bio-Oss Collagen incorporation in fresh extraction wounds: an experimental study in the dog[J]. Clin Oral Implants Res, 2010, 21(1): 55-64. .
[43]
MollyL, VandrommeH, QuirynenM, et al. Bone formation following implantation of bone biomaterials into extraction sites[J]. J Periodontol, 2008, 79(6): 1108-1115. .
[44]
HebererS, Al-ChawafB, JablonskiC, et al. Healing of ungrafted and grafted extraction sockets after 12 weeks: a prospective clinical study[J]. Int J Oral Maxillofac Implants, 2011, 26(2): 385-392.
[45]
CanulloL, Del FabbroM, KhijmatgarS, et al. Dimensional and histomorphometric evaluation of biomaterials used for alveolar ridge preservation: a systematic review and network meta-analysis[J]. Clin Oral Investig, 2022, 26(1): 141-158. .
[46]
SanzM, LindheJ, AlcarazJ, et al. The effect of placing a bone replacement graft in the gap at immediately placed implants: a randomized clinical trial[J]. Clin Oral Implants Res, 2017, 28(8): 902-910. .
[47]
MachteiEE, MayerY, HorwitzJ, et al. Prospective randomized controlled clinical trial to compare hard tissue changes following socket preservation using alloplasts, xenografts vs no grafting: Clinical and histological findings[J]. Clin Implant Dent Relat Res, 2019, 21(1): 14-20. .
[48]
Ben AmaraH, KimJJ, KimHY, et al. Is ridge preservation effective in the extraction sockets of periodontally compromised teeth? A randomized controlled trial[J]. J Clin Periodontol, 2021, 48(3): 464-477. .
[49]
MilaniS, Dal PozzoL, RasperiniG, et al. Deproteinized bovine bone remodeling pattern in alveolar socket: a clinical immunohistological evaluation[J]. Clin Oral Implants Res, 2016, 27(3): 295-302. .
[50]
StumbrasA, JanuzisG, GervickasA, et al. Randomized and controlled clinical trial of bone healing after alveolar ridge preservation using xenografts and allografts versus plasma rich in growth factors[J]. J Oral Implantol, 2020, 46(5): 515-525. .
[51]
BaroneA, AldiniNN, FiniM, et al. Xenograft versus extraction alone for ridge preservation after tooth removal: a clinical and histomorphometric study[J]. J Periodontol, 2008, 79(8): 1370-1377. .
[52]
CorbellaS, TaschieriS, FrancettiL, et al. Histomorphometric results after postextraction socket healing with different biomaterials: a systematic review of the literature and meta-analysis[J]. Int J Oral Maxillofac Implants, 2017, 32(5): 1001-1017. .
[53]
Avila-OrtizG, ElangovanS, KramerKW, et al. Effect of alveolar ridge preservation after tooth extraction: a systematic review and meta-analysis[J]. J Dent Res, 2014, 93(10): 950-958. .
[54]
CrespiR, CapparèP, GherloneE. Comparison of magnesium-enriched hydroxyapatite and porcine bone in human extraction socket healing: a histologic and histomorphometric evaluation[J]. Int J Oral Maxillofac Implants, 2011, 26(5): 1057-1062.
[55]
MayerY, Zigdon-GiladiH, MachteiEE. Ridge preservation using composite alloplastic materials: a randomized control clinical and histological study in humans[J]. Clin Implant Dent Relat Res, 2016, 18(6): 1163-1170. .
[56]
UzedaMJ, de Brito ResendeRF, SartorettoSC, et al. Randomized clinical trial for the biological evaluation of two nanostructured biphasic calcium phosphate biomaterials as a bone substitute[J]. Clin Implant Dent Relat Res, 2017, 19(5): 802-811. .
[57]
MadanR, MohanR, BainsVK, et al. Analysis of socket preservation using polylactide and polyglycolide (PLA-PGA) sponge: a clinical, radiographic, and histologic study[J]. Int J Periodontics Restorative Dent, 2014, 34(2): e36-42. .
[58]
BittnerSM, GuoJL, MelchiorriA, et al. Three-dimensional printing of multilayered tissue engineering scaffolds[J]. Mater Today (Kidlington), 2018, 21(8): 861-874. .
[59]
PengC, ZhengJ, ChenD, et al. Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro[J]. Mol Med Rep, 2018, 18(2): 1335-1344. .
[60]
CaiX, YangF, YanX, et al. Influence of bone marrow-derived mesenchymal stem cells pre-implantation differentiation approach on periodontal regeneration in vivo[J]. J Clin Periodontol, 2015, 42(4): 380-389. .
[61]
HeXT, LiX, ZhangM, et al. Role of molybdenum in material immunomodulation and periodontal wound healing: Targeting immunometabolism and mitochondrial function for macrophage modulation[J]. Biomaterials, 2022, 283: 121439. .
[62]
WangP, SongY, WeirMD, et al. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering[J]. Dent Mater, 2016, 32(2): 252-263. .
[63]
SongY, ZhangC, WangP, et al. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold[J]. Mater Sci Eng C Mater Biol Appl, 2017, 75: 895-905. .
[64]
AnituaE, Murias-FreijoA, AlkhraisatMH, et al. Clinical, radiographical, and histological outcomes of plasma rich in growth factors in extraction socket: a randomized controlled clinical trial[J]. Clin Oral Investig, 2015, 19(3): 589-600. .
[65]
ClarkD, RajendranY, PaydarS, et al. Advanced platelet-rich fibrin and freeze-dried bone allograft for ridge preservation: a randomized controlled clinical trial[J]. J Periodontol, 2018, 89(4): 379-387. .
[66]
HauserF, GaydarovN, BadoudI, et al. Clinical and histological evaluation of postextraction platelet-rich fibrin socket filling: a prospective randomized controlled study[J]. Implant Dent, 2013, 22(3): 295-303. .
[67]
NtounisA, GeursN, VassilopoulosP, et al. Clinical assessment of bone quality of human extraction sockets after conversion with growth factors[J]. Int J Oral Maxillofac Implants, 2015, 30(1): 196-201. .
[68]
Gomes-FerreiraPH, OkamotoR, FerreiraS, et al. Scientific evidence on the use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in oral and maxillofacial surgery[J]. Oral Maxillofac Surg, 2016, 20(3): 223-232. .
[69]
KellyMP, VaughnOL, AndersonPA. Systematic review and meta-analysis of recombinant human bone morphogenetic rrotein-2 in localized alveolar ridge and maxillary sinus augmentation[J]. J Oral Maxillofac Surg, 2016, 74(5): 928-939. .
[70]
SchliephakeH. Clinical efficacy of growth factors to enhance tissue repair in oral and maxillofacial reconstruction: a systematic review[J]. Clin Implant Dent Relat Res, 2015, 17(2): 247-273. .