综述
杀伤细胞免疫球蛋白样受体KIR2DS4等位基因与疾病相关性的研究进展
中华妇幼临床医学杂志(电子版), 2016,12(1) : 114-117. DOI: 10.3877/cma.j.issn.1673-5250.2016.01.021
摘要

杀伤细胞免疫球蛋白样受体(KIR)主要表达于自然杀伤(NK)细胞及某些T细胞表面,可调节NK细胞功能。KIR编码基因具有高度多态性,可组成不同单倍型。其中KIR2DS4具有多种等位基因,是单倍型A携带的唯一活化性KIR基因,编码功能性KIR2DS4受体,而当其在第5外显子丢失22 bp碱基后即成为KIR1D基因,编码无功能的可溶性受体KIR1D。由于KIR2DS4具有独特的基因特征、单倍型和群体分布特征,以及KIR2DS4受体与配体的关系,使其在KIR与疾病相关性研究中尤为重要。笔者拟就近年来KIR2DS4等位基因与疾病相关性的研究进展进行综述。

引用本文: 蒋鸣燕, 朱易萍, 李强. 杀伤细胞免疫球蛋白样受体KIR2DS4等位基因与疾病相关性的研究进展 [J/OL] . 中华妇幼临床医学杂志(电子版), 2016, 12(1) : 114-117. DOI: 10.3877/cma.j.issn.1673-5250.2016.01.021.
参考文献导出:   Endnote    NoteExpress    RefWorks    NoteFirst    医学文献王
扫  描  看  全  文

正文
作者信息
基金 1  关键词  3
English Abstract
评论
阅读 475  评论 0
相关资源
引用 | 论文 | 视频

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

除非特别申明,本刊刊出的所有文章不代表中华医学会和本刊编辑委员会的观点。

本刊为电子杂志,以光盘形式出版。本册应读者需求按需印刷,随光盘免费赠阅。光盘如有质量问题,请向编辑部调换。

自然杀伤(natural killer, NK)细胞是一类不具有T、B淋巴细胞表面标志物和特征的细胞毒性淋巴细胞,该细胞功能与人类多种疾病的发生、发展密切相关[1]。NK细胞的细胞毒作用受到多种活化性受体和抑制性受体的调控,从而维持机体自身免疫耐受和对病原体、肿瘤细胞免疫监视等的动态平衡[2,3]。其中,杀伤细胞免疫球蛋白样受体(killer cell immunoglobulin-like receptor, KIR)是主要表达于NK细胞及某些T淋巴细胞表面的受体之一,可参与调节NK细胞功能[4]。KIR由人类染色体19q13.42位于白细胞受体复合体(leukocyte receptor complex, LRC)中一段长约150 kb的基因区域编码[5,6]。目前已发现16种KIR基因(包括2个假基因KIR2DP1KIR3DP1)。其中,编码胞质区L型长尾段的为抑制性KIR基因,包括KIR3DL1-3KIR2DL1-3KIR2DL5;编码胞质区S型短尾段的为活化性KIR基因,包括KIR2DS1-5、KIR3DS1;KIR2DL4同时具有抑制和活化功能[5,6]KIR基因具有高度基因多态性,表现为KIR基因组合数量和种类的多态性,以及同一KIR基因座等位基因的多态性[7,8]KIR基因组合具有一定规律性,从而形成不同的单倍型,分为单倍型A和单倍型B两组。单倍型A结构较为固定,包括9个基因(KIR3DL3、KIR2DL3、KIR2DP1、KIR2DL1、KIR3DP1、KIR2DL4、KIR3DL1、KIR2DS4KIR3DL2),可编码多种抑制性KIR和1种活化性KIR基因(KIR2DS4)。除单倍型A的单倍型统称为单倍型B,由多种基因组成(KIR2DS1、KIR2DS2、KIR2DS3、KIR2DS5、KIR2DL2、KIR2DL5KIR3DS1等),可编码多种活化性KIR[8,9]。KIR的配体主要是人类白细胞抗原(human leucocyte antigen, HLA)I类分子[10]。多种抑制性和活化性KIR的组合表达,可通过KIR与靶细胞上的配体结合,产生抑制和活化信号,调节NK细胞杀伤活性,参与人类多种疾病的发生、发展[11,12,13]

1 KIR2DS4等位基因

KIR2DS4是单倍型A携带的唯一活化性KIR基因,具有12种等位基因,其中,9种等位基因存在编码区核苷酸改变:2DS4*00101、*00102*00103编码完整的细胞表面受体KIR2DS4,而2DS4*003、004、006、007、008009等位基因则在第5外显子缺失22 bp碱基,导致读码框移位,形成截短的KIR2DS4受体,而该受体由于失去跨膜区和胞质区结构域,无法锚定于细胞膜上,从而产生可溶性无功能变异体KIR1D[14,15,16]。不同人种KIR2DS4等位基因频率不同。黄种人(包括中国汉族人、日本人和韩国人)KIR2DS4KIR1D基因频率比例约为2:1[17,18,19],白种人以KIR1D基因为主[20,21]。KIR2DS4受体在胞质区无免疫受体酪氨酸抑制基序(immunoreceptor tyrosine-based inhibitory motif, ITIM),但在跨膜区含有带正电荷的赖氨酸残基,可以与其他含有免疫受体酪氨酸活化基序(immunoreceptor tyrosine-based activation motif, ITAM)的分子如DNAX相关蛋白(DNAX-associated protein, DAP)12,或杀伤细胞活化受体相关蛋白(killer cell activating receptor-associated protein, KARAP)非共价结合,使DAP12、Sky酪氨酸激酶、磷脂酶C等发生磷酸化,激活丝裂原活化蛋白激酶(mitogen activated protein kinase, MAPK)级联反应,引起NK细胞活化[22]

目前,KIR2DS4的生理作用及其功能性配体仍尚未完全明确。有研究结果显示,KIR2DS4可能与某些HLA-Ⅰ类分子[10,23,24,25,26]及其他未知配体[如主要组织相容性复合体(major histocompatibility complex,MHC)-Ⅰ类分子]结合[27],例如KIR2DS4与部分HLA-C的亲和力弱于KIR2DS1,而KIR2DS4可与HLA-A*11结合[25]。Katz等[24]研究结果显示,KIR2DS4可与表达HLA-Cw4的细胞低亲和力结合,还可识别黑色素瘤细胞上表达的非HLA-Ⅰ类配体,增强NK细胞活性,杀伤靶细胞[27]

2 KIR2DS4与相关疾病
2.1 KIR2DS4与感染性疾病

KIR2DS4和KIR1D与感染性疾病的相关性日益成为研究热点之一。携带KIR2DS4的血清人类免疫缺陷病毒(human immun-odeficiency virus,HIV)呈阳性患者更易将HIV-1传递给血清HIV呈阴性的伴侣[26]。一项关于母婴传播HIV的研究结果显示,胎儿宫内感染组KIR1D基因频率较非感染组显著升高[28]。对于母亲KIR2DS4而胎儿KIR2DS者,分娩期发生母婴传播HIV的婴儿携带KIR1D基因比例较未发生母婴传播HIV的婴儿显著升高[28]。Zhuang等[29]研究结果显示,中国汉族梅毒患者KIR1D纯合子(KIR1D/KIR1D)的基因频率较正常对照组显著增高,提示KIR1D纯合子可能与中国汉族人群的梅毒易感性相关。疟原虫阳性患者杂合子(KIR3DL1/KIR3DS1)联合KIR2DS4纯合子(KIR2DS4/KIR2DS4)的基因频率也较疟原虫阴性患者显著升高[30]。在KIR基因簇中,KIR3DL1KIR2DS4(包括KIR2DS4及其变异体KIR1D)均位于端粒侧,并且二者存在明显连锁不平衡(linkage disequilibrium, LD)[31]。基于上述结构关系,KIR3DL1可能作为KIR2DS4活化的抑制体,提示二者活化和抑制信号的平衡关系可能参与个体免疫功能的平衡。这种调节机制可能是上游KIR3DL1的表达调节KIR2DS4的转录[30]KIR等位基因的多态性可能产生不同的KIR表达水平,从而具有不同的配体特异性[32]。Paladino等[33]研究结果显示,丙型肝炎病毒(hepatitis C virus,HCV)感染者KIR2DS4基因频率降低,提示特定KIR基因对一种疾病有益的同时,可能对另一种疾病有害。

2.2 KIR2DS4与肿瘤性疾病

目前,KIR2DS4与肿瘤性疾病关系的研究较多。Pan等[34]研究结果显示,肝细胞性肝癌组患者KIR2DS4基因频率较非肝细胞性肝癌组患者增高,但二者比较,差异无统计学意义,并且KIR2DS4是否可与乙型肝炎病毒(hepatitis B virus,HBV)感染细胞上的蛋白结合仍需进一步研究。De Re等[35]研究结果显示,KIR2DS4转移性结直肠癌患者治疗后完全缓解率较KIR2DS4患者显著增高。

Giebel等[36]研究结果显示,波兰接受造血干细胞移植(hematopoietic stem cell transplantation,HSCT)的慢性粒细胞白血病(chronic myeloid leukemia,CML)患者携带KIR2DS4KIR1D基因频率较供者显著增高,但未发现接受HSCT的急性髓细胞白血病(acute myelocytic leukemia,AML)和急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)患者和供者中KIR2DS4KIR1D基因频率有类似差异。该研究结果提示,CML细胞可能是KIR2DS4受体介导杀伤作用的靶细胞,而由于无功能的KIR1D替代KIR2DS4,可能降低NK细胞对CML细胞的杀伤作用。张艳等[37]研究结果显示,中国汉族白血病患者KIR2DS4基因频率较正常对照组显著升高,而进一步比较发现CML组患儿KIR2DS4基因频率较急性非淋巴细胞白血病(acute nonlymphocytic leukemia,NALL)组,ALL组及对照组患儿均显著升高,该结果提示活化性KIR2DS4可能是CML发病的危险因素。但由于该研究未区分KIR2DS4及其等位基因KIR1D,可能影响针对KIR2DS4与白血病发病相关性研究的结果[38]。Almalte等[39]研究结果显示,法裔加拿大B-ALL患儿活化性KIR基因(包括KIR2DS4,不包括KIR1D)基因频率较正常对照组显著降低,提示活化性KIR基因对儿童B-ALL具有保护作用。但随后德国一项研究结果显示,白种人活化性KIR基因与儿童B-ALL的发病无类似相关性,但该研究未区分KIR2DS4KIR1D[40]

目前,对KIR2DS4相应配体的认知较为有限。有研究结果显示,KIR2DS4配体主要为HLA-A*11、部分HLA-C1和HLA-C2及未识别的黑色素瘤抗原[10,23,25]。由于KIR1D编码可溶性分子,因此KIR1D可屏蔽KIR2DS4或某些细胞(如T细胞、NK细胞)上其他受体的配体[41],或作为清除可溶性HLA的诱导物,干扰NK细胞功能[15,36]。Pan等[34]研究结果亦显示,KIR1D分子可能通过与KIR2DS4的配体相互作用发挥功能。KIR1D蛋白在表达其配体的细胞上可能发挥旁分泌功能,或者在表达交叉重叠配体上发挥膜受体竞争功能[15,36]。上述猜测与Gomez-Lozano等[42]研究的KIR3DP1v功能类似。此外,由于抑制性受体的配体HLA-Ⅰ表达水平降低,削弱抑制信号,从而可能增强NK细胞对白血病细胞的溶解作用[43,44]

2.3 KIR2DS4与其他疾病

HSCT后巨细胞病毒(cytomegalovirus,CMV)再活化的患者KIR2DS2和KIR2DS4蛋白表达增加[45]。此外,由于供者活化性KIR是发生急性移植物抗宿主病(acute graft-versus-host disease,aGVHD)的潜在高危标志物[46]。Bao等[47]发现KIR2DS4作为AA基因型供者体内唯一的活化性KIR基因,KIR2DS4的表达增加异基因造血干细胞移植(allogeneic hematopoietic stem cell transplantation, allo-HSCT)后aGVHD的发生风险。Chen等[48]研究结果显示,含有更多活化性KIR受体的NK细胞可产生更多γ-干扰素,进而产生强烈的细胞溶解效应。而γ-干扰素已被证实与aGVHD的发生有关[49]。对于因肾小球肾炎进入终末期肾病而接受肾脏移植的患者,其KIR2DS4KIR1D基因增加急性排斥反应的发生风险[41]。进行肝脏移植的供者与受者KIR基因错配影响移植物存活率。例如,对于接受HLA-C1(HLA-C2/HLA-C2)供者移植的KIR2DS4受者,其移植物存活率显著低于接受HLA-C1/HLA-C1供者移植的受者[50]。全身型幼年特发性关节炎(juvenile idiopathic arthritis,JIA)患儿KIR2DS4基因频率明显低于多关节型JIA、少关节型JIA患儿及健康儿童[51]。此外,携带单倍型A KIR1D基因的孕妇分娩成功率较低[52]

KIR2DS4作为单倍型A的唯一活化性KIR基因,其基因多态性与疾病的相关性日益引起人们关注[24,36,37]。由于样本量、分组标准及研究人种等因素不同,上述研究可能得出不一致结果。因而,KIR2DS4KIR1D基因、蛋白及其配体的功能仍有待于进一步探索,明确其参与疾病发生发展的具体机制,以指导临床诊疗。

参考文献
1
VerheydenS, DemanetC. NK cell receptors and their ligands in leukemia[J]. Leukemia, 2008, 22(2):249-257.
2
TrinchieriG. Biology of natural killer cells[J]. Adv Immunol, 1989, 47:187-376.
3
LjunggrenHG, KarreK.In search of the"missing self": MHC molecules and NK cell recognition[J]. Immunol Today, 1990, 11(7):237-244.
4
UhrbergM, ValianteNM, YoungNT, et al.The repertoire of killer cell Ig-like receptor and CD94:NKG2A receptors in T cells: clones sharing identical alpha beta TCR rearrangement express highly diverse killer cell Ig-like receptor patterns[J].J Immunol, 2001, 166(6):3923-3932.
5
YawataM, YawataN, Abi-RachedL, et al.Variation within the human killer cell immunoglobulin-like receptor (KIR) gene family[J]. Crit Rev Immunol, 2002, 22(5-6):463-482.
6
ParhamP. Immunogenetics of killer cell immunoglobulin-like receptors[J]. Mol Immunol, 2005, 42(4):459-462.
7
WilsonMJ, TorkarM, HaudeA, et al. Plasticity in the organization and sequences of human KIR/ILT gene families[J]. Proc Natl Acad Sci USA, 2000, 97(9):4778-4783.
8
UhrbergM, ValianteNM, ShumBP, et al. Human diversity in killer cell inhibitory receptor genes[J]. Immunity, 1997, 7(6):753-763.
9
WittCS, DewingC, SayerDC, et al. Population frequencies and putative haplotypes of the killer cell immunoglobulin-like receptor sequences and evidence for recombination[J].Transplantation, 1999, 68(11):1784-1789.
10
ParhamP, NormanPJ, Abi-RachedL, et al.Human-specific evolution of killer cell immunoglobulin-like receptor recognition of major histocompatibility complex class I molecules[J]. Philos Trans R Soc Lond B Biol Sci, 2012, 367(1590):800-811.
11
BrycesonYT, LongEO. Line of attack: NK cell specificity and integration of signals[J]. Curr Opin Immunol, 2008, 20(3):344-352.
12
LanierLL. Natural killer cell receptor signaling[J]. Curr Opin Immunol, 2003, 15(3):308-314.
13
LanierLL. NK cell recognition[J]. Annu Rev Immunol, 2005, 23:225-274.
14
MaxwellLD, WilliamsF, GilmoreP, et al. Investigation of killer cell immunoglobulin-like receptor gene diversity: Ⅱ. KIR2DS4[J]. Hum Immunol, 2004, 65(6):613-621.
15
MiddletonD, GonzalezA, GilmorePM.Studies on the expression of the deleted KIR2DS4*003 gene product and distribution of KIR2DS4 deleted and nondeleted versions in different populations[J]. Hum Immunol, 2007, 68(2):128-134.
16
HsuKC, LiuXR, SelvakumarA, et al. Killer Ig-like receptor haplotype analysis by gene content: evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets[J]. J Immunol, 2002, 169(9):5118-5129.
17
YawataM, YawataN, DraghiM, et al. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function[J]. J Exp Med, 2006, 203(3):633-645.
18
WhangDH, ParkH, YoonJA, et al. Haplotype analysis of killer cell immunoglobulin-like receptor genes in 77 Korean families[J]. Hum Immunol, 2005, 66(2):146-154.
19
BaoX, HouL, SunA, et al. Distribution of killer cell immunoglobulin-like receptor genes and 2DS4 alleles in the Chinese Han population[J]. Hum Immunol, 2010, 71(3):289-292.
20
Gomez-LozanoN, VilchesC.Genotyping of human killer-cell immunoglobulin-like receptor genes by polymerase chain reaction with sequence-specific primers: an update[J]. Tissue Antigens, 2002, 59(3):184-193.
21
LuszczekW, MajorczykE, NowakI, et al. Inhibitory and activatory KIR gene frequencies in the Polish population[J]. Int J Immunogenet, 2006, 33(3):167-170.
22
LanierLL, CorlissBC, WuJ, et al. Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells[J]. Nature, 1998, 391(6668):703-707.
23
KusnierczykP. Are killer cell immunoglobulin-like receptor genes important for the prediction of kidney graft rejection?[J].Arch Immunol Ther Exp (Warsz), 2013, 61(4):321-325.
24
KatzG, MarkelG, MizrahiS, et al. Recognition of HLA-Cw4 but not HLA-Cw6 by the NK cell receptor killer cell Ig-like receptor two-domain short tail number 4[J]. J Immunol, 2001, 166(12):7260-7267.
25
GraefT, MoestaAK, NormanPJ, et al. KIR2DS4 is a product of gene conversion with KIR3DL2 that introduced specificity for HLA-A*11 while diminishing avidity for HLA-C[J]. J Exp Med, 2009, 206(11):2557-2572.
26
MerinoA, MalhotraR, MortonM, et al. Impact of a functional KIR2DS4 allele on heterosexual HIV-1 transmission among discordant Zambian couples[J]. J Infect Dis, 2011, 203(4):487-495.
27
KatzG, GazitR, ArnonTI, et al. MHC class I-independent recognition of NK-activating receptor KIR2DS4[J]. J Immunol, 2004, 173(3):1819-1825.
28
HongHA, PaximadisM, GrayGE, et al. KIR2DS4 allelic variants: differential effects on in utero and intrapartum HIV-1 mother-to-child transmission[J].Clin Immunol, 2013, 149(3):498-508.
29
ZhuangYL, ZhuCF, ZhangY, et al. Association of KIR2DS4 and its variant KIR1D with syphilis in a Chinese Han population[J]. Int J Immunogenet, 2012, 39(2):114-118.
30
TaniguchiM, KawabataM. KIR3DL1/S1 genotypes and KIR2DS4 allelic variants in the AB KIR genotypes are associated with Plasmodium-positive individuals in malaria infection[J]. Immunogenetics, 2009, 61(11-12):717-730.
31
ShillingHG, GuethleinLA, ChengNW, et al. Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype[J]. J Immunol, 2002, 168(5):2307-2315.
32
NormanPJ, Abi-RachedL, GendzekhadzeK, et al. Unusual selection on the KIR3DL1/S1 natural killer cell receptor in Africans[J]. Nat Genet, 2007, 39(9):1092-1099.
33
PaladinoN, FloresAC, MarcosCY, et al. Increased frequencies of activating natural killer receptors are associated with liver injury in individuals who do not eliminate hepatitis C virus[J]. Tissue Antigens, 2007, 69(Suppl 1):109-111.
34
PanN, JiangW, SunH, et al. KIR and HLA loci are associated with hepatocellular carcinoma development in patients with hepatitis B virus infection: a case-control study[J]. PLoS One, 2011, 6(10):e25682.
35
De ReV, CaggiariL, De ZorziM, et al. Genetic diversity of the KIR/HLA system and outcome of patients with metastatic colorectal cancer treated with chemotherapy[J]. PLoS One, 2014, 9(1):e84940.
36
GiebelS, NowakI, WojnarJ, et al. Association of KIR2DS4 and its variant KIR1D with leukemia[J]. Leukemia, 2008, 22(11):2129-2130; discussion 2130-2131.
37
ZhangY, WangB, YeS, et al. Killer cell immunoglobulin-like receptor gene polymorphisms in patients with leukemia: possible association with susceptibility to the disease[J]. Leuk Res, 2010, 34(1):55-58.
38
KusnierczykP, GiebelS, NowakI. Association of KIR2DS4 gene with susceptibility to leukemia: Chinese-Polish discrepancy[J]. Leuk Res, 2011, 35(11):1540.
39
AlmalteZ, SamaraniS, IannelloA, et al. Novel associations between activating killer-cell immunoglobulin-like receptor genes and childhood leukemia[J]. Blood, 2011, 118(5):1323-1328.
40
BaborF, ManserA, SchonbergK, et al. Lack of association between KIR genes and acute lymphoblastic leukemia in children[J]. Blood, 2012, 120(13):2770-2772.
41
NowakI, Magott-ProcelewskaM, KowalA, et al. Killer immunoglobulin-like receptor (KIR) and HLA genotypes affect the outcome of allogeneic kidney transplantation[J]. PLoS One, 2012, 7(9):e44718.
42
Gomez-LozanoN, EstefaniaE, WilliamsF, et al.The silent KIR3DP1 gene(CD158c) is transcribed and might encode a secreted receptor in a minority of humans, in whom the KIR3DP1, KIR2DL4 and KIR3DL1/KIR3DS1 genes are duplicated[J]. Eur J Immunol, 2005, 35(1):16-24.
43
KarreK. Immunology. A perfect mismatch[J]. Science, 2002, 295(5562):2029-2031.
44
FeuchtingerT, PfeifferM, PfaffleA, et al. Cytolytic activity of NK cell clones against acute childhood precursor-B-cell leukaemia is influenced by HLA class Ⅰ expression on blasts and the differential KIR phenotype of NK clones[J]. Bone Marrow Transplant, 2009, 43(11):875-881.
45
GM, FranckAE, LiX, et al. Expression of activating KIR2DS2 and KIR2DS4 genes after hematopoietic cell transplantation: relevance to cytomegalovirus infection[J]. Biol Blood Marrow Transplant, 2011, 17(11):1662-1672.
46
GagneK, BrizardG, GueglioB, et al. Relevance of KIR gene polymorphisms in bone marrow transplantation outcome[J]. Hum Immunol, 2002, 63(4):271-280.
47
BaoXJ, HouLH, SunAN, et al. The impact of KIR2DS4 alleles and the expression of KIR in the development of acute GVHD after unrelated allogeneic hematopoietic SCT[J]. Bone Marrow Transplant, 2010, 45(9):1435-1441.
48
ChenC, BussonM, RochaV, et al. Activating KIR genes are associated with CMV reactivation and survival after non-T-cell depleted HLA-identical sibling bone marrow transplantation for malignant disorders[J]. Bone Marrow Transplant, 2006, 38(6):437-444.
49
CooleyS, McCullarV, WangenR, et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation[J]. Blood, 2005, 106(13):4370-4376.
50
LegazI, Lopez-AlvarezMR, CampilloJA, et al. KIR gene mismatching and KIR/C ligands in liver transplantation: consequences for short-term liver allograft injury[J]. Transplantation, 2013, 95(8):1037-1044.
51
ZhouJ, TangX, DingY, et al. Natural killer cell activity and frequency of killer cell immunoglobulin-like receptors in children with different forms of juvenile idiopathic arthritis[J]. Pediatr Allergy Immunol, 2013, 24(7):691-696.
52
HibySE, WalkerJJ, O'ShaughnessyKM, et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success[J]. J Exp Med, 2004, 200(8):957-965.
展开/关闭提纲
查看图表详情
下载全文PDF
回到顶部
放大字体
缩小字体
标签
关键词